GNet Solutions - Support #98

Configure OpenLDAP Server on Ubuntu
03/17/2013 04:10 PM - Daniel Curtis

Status: Closed Start date: 03/17/2013
Priority: Normal Due date:

Assignee: Daniel Curtis % Done: 0%
Category: Estimated time: 2.00 hours
Target version: Spent time: 7.30 hours
Description

1. OpenLDAP Server

The Lightweight Directory Access Protocol, or LDAP, is a protocol for querying and modifying

a X.500-based directory service running over TCP/IP. The current LDAP version is LDAPv3, as
defined in RFC45101, and the LDAP implementation used in Ubuntu is OpenLDAP, currently at
version 2.4.25 (Oneiric).

So this protocol accesses LDAP directories. Here are some key concepts and terms:

A LDAP directory is a tree of data entries that is hierarchical in nature and is called the Directory Information Tree (DIT).

An entry consists of a set of attributes.

An attribute has a type (a name/description) and one or more values.

Every attribute must be defined in at least one objectClass.

Attributes and objectclasses are defined in schemas (an objectclass is actually considered as a special kind of attribute).

Each entry has a unique identifier: it's Distinguished Name (DN or dn). This consists of it's Relative Distinguished Name (RDN)
followed by the parent entry's DN.

¢ The entry's DN is not an attribute. It is not considered part of the entry itself.

e o o o o o

NOTE: The terms object, container, and node have certain connotations but they all essentially
mean the same thing as entry, the technically correct term.

For example, below we have a single entry consisting of 11 attributes. It's DN is "cn=John
Doe,dc=example,dc=com"; it's RDN is "cn=John Doe"; and it's parent DN is "dc=example,dc=com".

dn: cn=John Doe,dc=example,dc=com
cn: John Doe

givenName: John

sn: Doe

telephoneNumber: +1 888 555 6789
telephoneNumber: +1 888 555 1232
mail: john@example.com

manager: cn=Larry Smith,dc=example,dc=com
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: person

objectClass: top

The above entry is in LDIF format (LDAP Data Interchange Format). Any information that you feed
into your DIT must also be in such a format. It is defined in RFC28492.

Although this guide will describe how to use it for central authentication, LDAP is good for anything
that involves a large number of access requests to a mostly-read, attribute-based (name:value)
backend.

Examples include:
* an address book

e alist of email addresses
¢ a mail server's configuration

1.1. Installation

08/22/2025 1/19

mailto:john@example.com

Install the OpenLDAP server daemon and the traditional LDAP management utilities. These are
found in packages slapd and Idap-utils respectively.

The installation of slapd will create a working configuration. In particular, it will create a database
instance that you can use to store your data. However, the suffix (or base DN) of this instance will be
determined from the domain name of the localhost.

If you want something different, edit /etc/hosts and replace the domain name with one that will give you the suffix you desire.

¢ For instance, if you want a suffix of dc=example,dc=com then your file would have a line similar to this:

127.0.1.1 hostname.example.com hostname

You can revert the change after package installation.

This guide will use a database suffix of dc=example,dc=com.

Install slapd and Idap-utils:

sudo apt—-get install slapd ldap-utils

Since Ubuntu 8.10 slapd is designed to be configured within slapd itself by dedicating a separate
DIT for that purpose. This allows one to dynamically configure slapd without the need to restart the
service. This configuration database consists of a collection of text-based LDIF files located under /
etc/ldap/slapd.d.

This way of working is known by several names:

e The slapd-config method,
¢ The RTC method (Real Time Configuration)
¢ The cn=config method.

You can still use the traditional flat-file method (slapd.conf) but it's not recommended; the functionality will be eventually phased out.
Ubuntu now uses the slapd-config method for slapd configuration and this guide reflects

that.

During the install you were prompted to define administrative credentials. These are LDAP-

based credentials for the rootDN of your database instance. By default, this user's DN is

ch=admin,dc=example,dc=com. Also by default, there is no administrative account created for the

slapd-config database and you will therefore need to authenticate externally to LDAP in order to

access it. We will see how to do this later on.

Some classical schemas (cosine, nis, inetorgperson) come built-in with slapd nowadays. There is also

an included "core" schema, a pre-requisite for any schema to work.

1.2. Post-install Inspection

The installation process set up 2 DITs. One for slapd-config and one for your own data
(dc=example,dc=com). Let's take a look.
h3. This is what the slapd-config database/DIT looks like.

Recall that this database is LDIF-based and lives under /etc/|dap/slapd.d:

¢ /etc/ldap/slapd.d/

cn=config

cn=module{0}.1dif

cn=schema

cn={0}core.ldif

cn={1l}cosine.ldif

cn={2}nis.ldif

cn={3}inetorgperson.ldif
cn=schema.ldif

HH= H = FH H =

08/22/2025 2/19

olcBackend={0}hdb.1dif

olcDatabase={0}config.ldif

olcDatabase={-1}frontend.ldif
olcDatabase={1l}hdb.1dif

cn=config.ldif

Do not edit the slapd-config database directly. Make changes via the LDAP protocol

(utilities).

Check the slapd-config DIT via the LDAP protocol:
sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b cn=config dn

dn: cn=config

dn: cn=module{0},cn=config

dn: cn=schema,cn=config

dn: cn={0}core,cn=schema,cn=config
dn: cn={1}cosine,cn=schema,cn=config
dn: cn={2}nis,cn=schema,cn=config

dn: cn={8}inetorgperson,cn=schema,cn=config
dn: olcBackend={0}hdb,cn=config

dn: olcDatabase={-1}frontend,cn=config
dn: olcDatabase={0}config,cn=config
dn: olcDatabase={1}hdb,cn=config

Explanation of entries:

cn=config: global settings

cn=module{0},cn=config: a dynamically loaded module
cn=schema,cn=config: contains hard-coded system-level schema
cn={0}core,cn=schema,cn=config: the hard-coded core schema
cn={1}cosine,cn=schema,cn=config: the cosine schema
cn={2}nis,cn=schema,cn=config: the nis schema
cn={3}inetorgperson,cn=schema,cn=config: the inetorgperson schema
olcBackend={0}hdb,cn=config: the 'hdb' backend storage type
olcDatabase={-1}frontend,cn=config: frontend database, default settings for other databases
olcDatabase={0}config,cn=config: slapd configuration database (cn=config)
olcDatabase={1}hdb,cn=config: your database instance (dc=examle,dc=com)

Check the dc=example,dc=com DIT:

ldapsearch -x -LLL -H ldap:/// -b dc=example,dc=com dn
dn: dc=example,dc=com
dn: cn=admin,dc=example,dc=com

Explanation of entries:

e dc=example,dc=com: base of the DIT
¢ cn=admin,dc=example,dc=com: administrator (rootDN) for this DIT (set up during package install)

1.3. Modifying/Populating your Database

Let's introduce some content to our database. We will add the following:
a node called People (to store users)

a node called Groups (to store groups)

a group called miners
a user called john

Create the following LDIF file and call it add_content.ldif:

dn: ou=People,dc=example, dc=com

08/22/2025

3/19

objectClass: organizationalUnit
ou: People

dn: ou=Groups,dc=example, dc=com
objectClass: organizationalUnit
ou: Groups

dn: cn=miners, ou=Groups, dc=example, dc=com
objectClass: posixGroup

cn: miners

gidNumber: 5000

dn: uid=john,ou=People,dc=example, dc=com
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount

uid: john

sn: Doe

givenName: John

cn: John Doe

displayName: John Doe
uidNumber: 10000

gidNumber: 5000

userPassword: johnldap

gecos: John Doe

loginShell: /bin/bash
homeDirectory: /home/john

It's important that uid and gid values in your directory do not collide with local values. Use high number ranges, such as starting at
5000. By setting the uid and gid values in Idap high, you also allow for easier control of what can be done with a local user vs a Idap
one. More on that later.

Add the content:
ldapadd -x -D cn=admin,dc=example,dc=com -W —-f add_content.ldif
Enter LDAP Password: **
adding new entry "ou=People,dc=example,dc=com"
adding new entry "ou=Groups,dc=example,dc=com"
adding new entry "cn=miners,ou=Groups,dc=example,dc=com"
adding new entry "uid=john,ou=People,dc=example,dc=com"
Check that the information has been correctly added with the Idapsearch utility:
ldapsearch -x -LLL -b dc=example,dc=com 'uid=john' cn gidNumber
dn: uid=john,ou=People,dc=example,dc=com
cn: John Doe
gidNumber: 5000
Explanation of switches:
e -x: "simple" binding; will not use the default SASL method
e -LLL: disable printing extraneous information

¢ uid=john: a "filter" to find the john user
¢ cn gidNumber: requests certain attributes to be displayed (the default is to show all attributes)

1.4. Modifying the slapd Configuration Database
The slapd-config DIT can also be queried and modified. Here are a few examples.

Use Idapmodify to add an "Index" (Dbindex attribute) to your {1}hdb,cn=config database
(dc=example,dc=com).

Create a file, call it uid_index.ldif:

08/22/2025 4/19

dn: olcDatabase={1l}hdb, cn=config
add: olcDbIndex
olcDbIndex: uid eq, pres, sub

Add the uid_index to the DIT:

sudo ldapmodify —-Q -Y EXTERNAL -H ldapi:/// -f uid_index.1ldif

modifying entry "olcDatabase={1}hdb,cn=config"

Confirm the change:

sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b \
cn=config ' (olcDatabase={1l}hdb)' olcDbIndex

dn: olcDatabase={1}hdb,cn=config
olcDbIndex: objectClass eq
olcDbindex: uid eq,pres,sub

Add a schema

It will first need to be converted to LDIF format. You can find unconverted schemas in addition to converted ones in the
/etc/ldap/schema directory.

It is not trivial to remove a schema from the slapd-config database. Practice adding schemas on a test system.

Before adding any schema, you should check which schemas are already installed (shown is a default, out-of-the-box output):

Check which schemas are installed:

sudo ldapsearch —-Q -LLL -Y EXTERNAL -H ldapi:/// -b \
cn=schema, cn=config dn

dn: cn=schema,cn=config

dn: cn={0}core,cn=schema,cn=config

dn: cn={1}cosine,cn=schema,cn=config

dn: cn={2}nis,cn=schema,cn=config

dn: cn={8}inetorgperson,cn=schema,cn=config

In the following example we'll add the CORBA schema.

Create the conversion configuration file schema_convert.conf containing the following lines:

include /etc/ldap/schema/core.schema
include /etc/ldap/schema/collective.schema
include /etc/ldap/schema/corba.schema
include /etc/ldap/schema/cosine.schema
include /etc/ldap/schema/duaconf.schema

08/22/2025 5/19

include /etc/ldap/schema/dyngroup.schema
include /etc/ldap/schema/inetorgperson.schema
include /etc/ldap/schema/java.schema

include /etc/ldap/schema/misc.schema

include /etc/ldap/schema/nis.schema

include /etc/ldap/schema/openldap.schema
include /etc/ldap/schema/ppolicy.schema
include /etc/ldap/schema/ldapns.schema
include /etc/ldap/schema/pmi.schema

Create the output directory Idif_output.

mkdir 1dif_output

Determine the index of the schema:

slapcat —-f schema_convert.conf -F 1dif_output -n 0 | grep corba,cn=schema

cn={1}corba,cn=schema,cn=config

When slapd injects objects with the same parent DN it will create an index for that
object. An index is contained within braces: {X}.

Use slapcat to perform the conversion:

slapcat —-f schema_convert.conf -F 1dif_output -n0 -H \
ldap:///cn={1}corba, cn=schema, cn=config -1 cn=corba.ldif

The converted schema is now in cn=corba.ldif

Edit cn=corba.ldif to arrive at the following attributes:

dn: cn=corba, cn=schema, cn=config

cn: corba

Also remove the following lines from the bottom:

structuralObjectClass: olcSchemaConfig

entryUUID: 52109a02-66ab-1030-8be2-bbf166230478
creatorsName: cn=config

createTimestamp: 20110829165435%

entryCSN: 20110829165435.935248Z#000000#000#000000
modifiersName: cn=config

modifyTimestamp: 20110829165435Z

Your attribute values will vary.

Use Idapadd to add the new schema to the slapd-config DIT:

sudo ldapadd -Q -Y EXTERNAL -H ldapi:/// -f cn\=corba.ldif

adding new entry "ch=corba,cn=schema,ch=config"

08/22/2025 6/19

Confirm currently loaded schemas:
sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b cn=schema,cn=config dn

dn: cn=schema,cn=config

dn: cn={0}core,cn=schema,cn=config

dn: cn={1}cosine,cn=schema,cn=config

dn: cn={2}nis,cn=schema,cn=config

dn: cn={8}inetorgperson,cn=schema,cn=config
dn: cn={4}corba,cn=schema,cn=config

For external applications and clients to authenticate using LDAP they will each need to be specifically configured to do so. Refer to
the appropriate client-side documentation for details.

1.5. Logging

Activity logging for slapd is indispensible when implementing an OpenLDAP-based solution yet it must be manually enabled after
software installation. Otherwise, only rudimentary messages will appear in the logs. Logging, like any other slapd configuration, is
enabled via the slapd-config database.

OpenLDAP comes with multiple logging subsystems (levels) with each one containing the lower one

(additive). A good level to try is stats. The slapd-config3 man page has more to say on the different
subsystems.

Create the file logging.ldif with the following contents:
dn: cn=config
changetype: modify

add: olcLogLevel
olcLogLevel: stats

Implement the change:

sudo ldapmodify —Q -Y EXTERNAL -H ldapi:/// —-f logging.ldif

This will produce a significant amount of logging and you will want to throttle back to a less verbose level once your system is in
production. While in this verbose mode your host's syslog engine (rsyslog) may have a hard time keeping up and may drop

messages:

rsyslogd-2177: imuxsock lost 228 messages from pid 2547 due to rate-limiting
You may consider a change to rsyslog's configuration. In /etc/rsyslog.conf, put:

Disable rate limiting
(default is 200 messages in 5 seconds; below we make the 5 become 0)
$SystemLogRateLimitInterval 0

And then restart the rsyslog daemon:

sudo service rsyslog restart

1.6. Replication

The LDAP service becomes increasingly important as more networked systems begin to depend on it.
In such an environment, it is standard practice to build redundancy (high availability) into LDAP to
prevent havoc should the LDAP server become unresponsive. This is done through LDAP replication.

Replication is achieved via the Syncrepl engine. This allows changes to be synchronized using a
Consumer - Provider model. The specific kind of replication we will implement in this guide is a
combination of the following modes: refreshAndPersist and delta-syncrepl. This has the Provider
push changed entries to the Consumer as soon as they're made but, in addition, only actual changes

08/22/2025 7/19

will be sent, not entire entries.

1.6.1. Provider Configuration
Begin by configuring the Provider.

Create an LDIF file with the following contents and name it provider_sync.ldif:

Add indexes to the frontend db.

dn: olcDatabase={1}hdb,cn=config
changetype: modify

add: olcDbIndex

olcDbIndex: entryCSN eq

add: olcDbIndex

olcDbIndex: entryUUID eqg

#Load the syncprov and accesslog modules.
dn: cn=module{0},cn=config

changetype: modify

add: olcModuleLoad

olcModuleLoad: syncprov

add: olcModuleLoad

olcModulelLoad: accesslog

Accesslog database definitions

dn: olcDatabase={2}hdb,cn=config
objectClass: olcDatabaseConfig
objectClass: olcHdbConfig

olcDatabase: {2}hdb

olcDbDirectory: /var/lib/ldap/accesslog
olcSuffix: cn=accesslog

0lcRootDN: cn=admin, dc=example, dc=com
olcDbIndex: default eq

olcDbIndex: entryCSN,objectClass, regkEnd, reqResult, regStart
Accesslog db syncprov.

dn: olcOverlay=syncprov,olcDatabase={2}hdb, cn=config
changetype: add

objectClass: olcOverlayConfig
objectClass: olcSyncProvConfig
olcOverlay: syncprov

olcSpNoPresent: TRUE

olcSpReloadHint: TRUE

syncrepl Provider for primary db

dn: olcOverlay=syncprov,olcDatabase={1}hdb, cn=config
changetype: add

objectClass: olcOverlayConfig

objectClass: olcSyncProvConfig

olcOverlay: syncprov

olcSpNoPresent: TRUE

accesslog overlay definitions for primary db

dn: olcOverlay=accesslog,olcDatabase={1}hdb, cn=config
objectClass: olcOverlayConfig

objectClass: olcAccessLogConfig

olcOverlay: accesslog

olcAccessLogDB: cn=accesslog

olcAccessLogOps: writes

olcAccessLogSuccess: TRUE

scan the accesslog DB every day, and purge entries older than 7 days
olcAccessLogPurge: 07+00:00 01+00:00

NOTE: Change the rootDN in the LDIF file to match the one you have for your directory.

The apparmor profile for slapd will need to be adjusted for the accesslog database location. Edit
/etc/apparmor.d/local/usr.sbin.slapd by adding the following:

08/22/2025 8/19

/var/lib/ldap/accesslog/ r,
/var/lib/ldap/accesslog/** rwk,

Create a directory, set up a databse config file, and reload the apparmor profile:

sudo -u openldap mkdir /var/lib/ldap/accesslog
sudo -u openldap cp /var/lib/ldap/DB_CONFIG /var/lib/ldap/accesslog
sudo service apparmor reload

Add the new content and, due to the apparmor change, restart the daemon:

sudo ldapadd -Q -Y EXTERNAL -H ldapi:/// —-f provider_sync.ldif
sudo service slapd restart

The Provider is now configured.

1.6.2. Consumer Configuration
And now configure the Consumer.

¢ Install the software by going through Section 1.1, “Installation”. Make sure the slapd-config database is identical to the
Provider's. In particular, make sure schemas and the databse suffix are the same.

Create an LDIF file with the following contents and name it consumer_sync.ldif:

dn: cn=module{0},cn=config

changetype: modify

add: olcModuleLoad

olcModuleLoad: syncprov

dn: olcDatabase={1}hdb,cn=config

changetype: modify

add: olcDbIndex

olcDbIndex: entryUUID eqg

add: olcSyncRepl

olcSyncRepl: rid=0 provider=ldap://ldap0l.example.com bindmethod=simple binddn="cn=admin, dc=exa
credentials=secret searchbase="dc=example,dc=com" logbase="cn=accesslog"
logfilter="(& (objectClass=auditWriteObject) (regResult=0))" schemachecking=on
type=refreshAndPersist retry="60 +" syncdata=accesslog

add: olcUpdateRef
olcUpdateRef: ldap://ldap0l.example.com

Ensure the following attributes have the correct values:

provider (Provider server's hostname -- Idap01.example.com in this example -- or IP address)

binddn (the admin DN you're using)

credentials (the admin DN password you're using)

searchbase (the database suffix you're using)

olcUpdateRef (Provider server's hostname or IP address)

rid (Replica ID, an unique 3-digit that identifies the replica. Each consumer should have at least one rid)

Add the new content:

sudo ldapadd -Q -Y EXTERNAL -H ldapi:/// -f consumer_sync.ldif

You're done. The two databases (suffix: dc=example,dc=com) should now be synchronizing.
1.6.3. Testing

Once replication starts, you can monitor it by running

Check LDAP replication:

ldapsearch -z1 -LLLQY EXTERNAL -H ldapi:/// -s base contextCSN

08/22/2025 9/19

dn: dc=example,dc=com
contextCSN: 20120201193408.178454Z#000000#000#000000

on both the provider and the consumer. Once the output (20120201193408.178454Z#000000#000#000000 in the above example)
for both machines match, you have replication. Every time a change is done in the provider, this value will change and so should the
one in the consumer(s).

If your connection is slow and/or your Idap database large, it might take a while for the consumer's
contextCSN match the provider's. But, you will know it is progressing since the consumer's
contextCSN will be steadly increasing.

If the consumer's contextCSN is missing or does not match the provider, you should stop and figure
out the issue before continuing. Try checking the slapd (syslog) and the auth log files in the provider
to see if the consumer's authentication requests were successful or its requests to retrieve data (they
look like a lot of Idapsearch statements) return no errors.

To test if it worked simply query, on the Consumer, the DNs in the database:
sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b dc=example,dc=com dn

You should see the user 'john’ and the group 'miners' as well as the nodes 'People’ and 'Groups'.

1.7. Access Control

The management of what type of access (read, write, etc) users should be granted to resources is known as access control. The
configuration directives involved are called access control lists or ACL.

When we installed the slapd package various ACL were set up automatically. We will look at a few important consequences of those
defaults and, in so doing, we'll get an idea of how ACLs work and how they're configured.

To get the effective ACL for an LDAP query we need to look at the ACL entries of the database being queried as well as those of the
special frontend database instance. The ACLs belonging to the latter act as defaults in case those of the former do not match. The
frontend database is the second to be consulted and the ACL to be applied is the first to match ("first match wins") among these 2
ACL sources. The following commands will give, respectively, the ACLs of the hdb database ("dc=example,dc=com") and those of
the frontend database:

Check ACLs for hdb database:

sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b \
cn=config ' (olcDatabase={1l}hdb)' olcAccess

dn: olcDatabase={1}hdb,cn=config

olcAccess: {0}to attrs=userPassword,shadowlLastChange by self write by anonymous
auth by dn="cn=admin,dc=example,dc=com" write by * none

olcAccess: {1}to dn.base="" by * read

olcAccess: {2}to * by self write by dn="cn=admin,dc=example,dc=com" write by * read

The rootDN always has full rights to it's database. Including it in an ACL does provide an explicit configuration but it also causes
slapd to incur a performance penalty.

Check ACLs for frontend database:

sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b \
cn=config ' (olcDatabase={-1}frontend)' olcAccess

dn: olcDatabase={-1}frontend,cn=config

olcAccess: {O}to * by dn.exact=gidNumber=0+uidNumber=0,cnh=peercred,
cn=external,cn=auth manage by * break

olcAccess: {1}to dn.exact="" by * read

olcAccess: {2}to dn.base="cn=Subschema" by * read

The very first ACL is crucial:

08/22/2025 10/19

olcAccess: {0}to attrs=userPassword,shadowLastChange by self write by anonymous auth by
dn="cn=admin,dc=example,dc=com" write by * none

This can be represented differently for easier digestion:

to attrs=userPassword

by self write

by anonymous auth

by dn="cn=admin, dc=example,dc=com" write
by * none

to attrs=shadowLastChange

by self write

by anonymous auth

by dn="cn=admin, dc=example,dc=com" write
by * none

This compound ACL (there are 2) enforces the following:

* Anonymous 'auth' access is provided to the userPassword attribute for the initial connection to occur. Perhaps
counter-intuitively, 'by anonymous auth' is needed even when anonymous access to the DIT is unwanted. Once the remote end
is connected, howerver, authentication can occur (see next point).

¢ Authentication can happen because all users have 'read’ (due to 'by self write') access to the userPassword attribute.

e The userPassword attribute is otherwise unaccessible by all other users, with the exception of the rootDN, who has complete
access to it.

¢ In order for users to change their own password, using passwd or other utilities, theshadowLastChange attribute needs to be
accessible once a user has authenticated.

This DIT can be searched anonymously because of 'by * read' in this ACL:
cEe %

by self write

by dn="cn=admin,dc=example,dc=com" write

by * read

If this is unwanted then you need to change the ACLs. To force authentication during a bind request you can alternatively (or in
combination with the modified ACL) use the 'olcRequire: authc' directive. As previously mentioned, there is no administrative account
created for the slapd-config database. There is, however, a SASL identity that is granted full access to it. It represents the localhost's

superuser (root/sudo). Here it is:

e dn.exact=gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth

Display the ACLs of the slapd-config database:

sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b \
cn=config ' (olcDatabase={0}config)' olcAccess

dn: olcDatabase={0}config,cn=config

olcAccess: {0}to * by dn.exact=gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth manage by * break

Since this is a SASL identity we need to use a SASL mechanism when invoking the LDAP utility in
question and and we have seen it plenty of times in this guide. It is the EXTERNAL mechanism. See
the previous command for an example. Note that:

1. You must use sudo to become the root identity in order for the ACL to match.
2. The EXTERNAL mechanism works via IPC (UNIX domain sockets). This means you must use the Idapi URI format.

Get all the ACLs is like this:

sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b \
cn=config ' (olcAccess=*)"' olcAccess olcSuffix

08/22/2025 11/19

There is much to say on the topic of access control. See the man page for slapd.access.

1.8. TLS

When authenticating to an OpenLDAP server it is best to do so using an encrypted session. This can be accomplished using
Transport Layer Security (TLS).

Here, we will be our own Certificate Authority and then create and sign our LDAP server certificate as that CA. Since slapd is
compiled using the gnutls library, we will use the certtool utility to complete these tasks.

Install the gnutls-bin and ssl-cert packages:

sudo apt-get install gnutls-bin ssl-cert

Create a private key for the Certificate Authority (CA):

sudo sh -c "certtool --generate-privkey > /etc/ssl/private/cakey.pem"

Create the template file /etc/ssl/ca.info to define the CA:

cn = Example Company
ca
cert_signing_key

Create the self-signed CA certificate:

sudo certtool —--generate-self-signed \
——-load-privkey /etc/ssl/private/cakey.pem \
——template /etc/ssl/ca.info \

——outfile /etc/ssl/certs/cacert.pem

Make a private key for the server:

sudo certtool —--generate-privkey \
--bits 1024 \
-—outfile /etc/ssl/private/ldap0l_slapd_key.pem

Replace Idap01 in the filename with your server's hostname.

NOTE: Naming the certificate and key for the host and service that will be using them will help keep things clear.

Create the /etc/ssl/Idap01.info info file containing:

organization = Example Company
cn = ldapOl.example.com
tls_www_server

encryption_key

signing_key

expiration_days = 3650

The above certificate is good for 10 years. Adjust accordingly.

Create the server's certificate:

sudo certtool —--generate-certificate \

——load-privkey /etc/ssl/private/ldap0Ol_slapd_key.pem \
——load-ca-certificate /etc/ssl/certs/cacert.pem \
—--load-ca-privkey /etc/ssl/private/cakey.pem \
-—template /etc/ssl/ldapOl.info \

—-—outfile /etc/ssl/certs/ldap0l_slapd_cert.pem

Create the file certinfo.ldif with the following contents

NOTE: Adjust accordingly, our example assumes we created certs using https://www.cacert.org):

08/22/2025 12/19

https://www.cacert.org

dn: cn=config
add: olcTLSCACertificateFile

0lcTLSCACertificateFile: /etc/ssl/certs/cacert.pem

add: olcTLSCertificateFile
olcTLSCertificateFile: /etc/ssl/certs/ldap0l_slapd_cert.pem

add: olcTLSCertificateKeyFile
olcTLSCertificateKeyFile: /etc/ssl/private/ldap0l_slapd_key.pem

Use the Idapmodify command to tell slapd about our TLS work via the slapd-config database:
sudo ldapmodify -Y EXTERNAL -H ldapi:/// —-f /etc/ssl/certinfo.ldif

Contratry to popular belief, you do not need Idaps:// in /etc/default/slapd in order to use encryption. You should have just:

SLAPD_SERVICES="ldap:/// ldapi:///"

LDAP over TLS/SSL (ldaps:/) is deprecated in favour of StartTLS. The latter refers to an existing LDAP session (listening on TCP
port 389) becoming protected by TLS/SSL whereas LDAPS, like HTTPS, is a distinct encrypted-from-the-start protocol that operates
over TCP port 636.

Tighten up ownership and permissions:

sudo adduser openldap ssl-cert

sudo chgrp ssl-cert /etc/ssl/private/ldap0l_slapd_key.pem
sudo chmod g+r /etc/ssl/private/ldap0l_slapd_key.pem

sudo chmod o-r /etc/ssl/private/ldap0l_slapd_key.pem

Restart OpenLDAP:

sudo service slapd restart

Check your host's logs (/var/log/syslog) to see if the server has started properly.

1.9. Replication and TLS

If you have set up replication between servers, it is common practice to encrypt (StartTLS) the replication traffic to prevent
evesdropping. This is distinct from using encryption with authentication as we did above. In this section we will build on that
TLS-authentication work.

The assumption here is that you have:

1. Set up replication between Provider and Consumer according to Section 1.6, “Replication”
2. Have configured TLS for authentication on the Provider by following Section 1.8, “TLS”.

As previously stated, the objective is replication with high availablity for the LDAP service.
Since we have TLS for authentication on the Provider we will require the same on the Consumer.
In addition to this, however, we want to encrypt replication traffic.

What remains to be done is to create a key and certificate for the Consumer and then configure accordingly. We will generate the
key/certificate on the Provider, to avoid having to create another CA certificate, and then transfer the necessary material over to the
Consumer.

On the Provider:

Create a holding directory (which will be used for the eventual transfer) and the Consumer’s
private key:

mkdir ldap0O2-ssl

cd ldap02-ssl

sudo certtool --generate-privkey \
--bits 1024 \

08/22/2025 13/19

——outfile 1ldap02_slapd_key.pem

Create an info file, Idap02.info, for the Consumer server, adjusting it's values accordingly:

organization = Example Company

cn = ldap02.example.com

tls_www_server

encryption_key

signing_key

expiration_days = 3650

Create the Consumer's certificate:

sudo certtool --generate-certificate \
——load-privkey ldap02_slapd_key.pem \
—-—-load-ca-certificate /etc/ssl/certs/cacert.pem \
—-—load-ca-privkey /etc/ssl/private/cakey.pem \
——template ldap02.info \

—-outfile 1ldap02_slapd_cert.pem

Get a copy of the CA certificate:
cp /etc/ssl/certs/cacert.pem .

We're done.

Now transfer the Idap02-ssl directory to the Consumer. Here we use scp (adjust accordingly):

cd ..
scp —-r ldap02-ssl user@consumer:

On the Consumer:

Configure TLS authentication:

sudo apt-get install ssl-cert

sudo adduser openldap ssl-cert

sudo cp ldap02_slapd_cert.pem cacert.pem /etc/ssl/certs
sudo cp ldap02_slapd_key.pem /etc/ssl/private

sudo chgrp ssl-cert /etc/ssl/private/ldap02_slapd_key.pem
sudo chmod g+r /etc/ssl/private/ldap02_slapd_key.pem

sudo chmod o-r /etc/ssl/private/ldap02_slapd_key.pem

Create the file /etc/ssl/certinfo.ldif with the following contents (adjust accordingly):
dn: cn=config

add: olcTLSCACertificateFile
olcTLSCACertificateFile: /etc/ssl/certs/cacert.pem

add: olcTLSCertificateFile
olcTLSCertificateFile: /etc/ssl/certs/ldap02_slapd_cert.pem

add: olcTLSCertificateKeyFile
olcTLSCertificateKeyFile: /etc/ssl/private/ldap02_slapd_key.pem

Configure the slapd-config database:

sudo ldapmodify -Y EXTERNAL -H ldapi:/// —-f certinfo.ldif
Configure /etc/default/slapd as on the Provider (SLAPD_SERVICES).
Configure TLS for Consumer-side replication.

Modify the existing olcSyncrepl attribute by tacking on some TLS options. In so doing, we will see, for the first time, how to change an
attribute's value(s).

e Create the file consumer_sync_tls.Idif with the following contents:

08/22/2025 14/19

dn: olcDatabase={1l}hdb,cn=config

replace: olcSyncRepl

olcSyncRepl: rid=0 provider=ldap://ldap0l.example.com bindmethod=simple
binddn="cn=admin, dc=example, dc=com" credentials=secret searchbase="dc=example, dc=com"
logbase="cn=accesslog" logfilter=" (& (objectClass=auditWriteObject) (regResult=0))"
schemachecking=on type=refreshAndPersist retry="60 +" syncdata=accesslog
starttls=critical tls_reqgcert=demand

The extra options specify, respectively, that the consumer must use StartTLS and that the CA certificate is required to verify the
Provider's identity. Also note the LDIF syntax for changing the values of an attribute (‘replace’).

Implement these changes:

sudo ldapmodify -Y EXTERNAL -H ldapi:/// —-f consumer_sync_tls.ldif

Restart slapd:

sudo service slapd restart

On the Provider:

Check to see that a TLS session has been established. In /var/log/syslog, providing you have 'conns'-level logging set up, you should
see messages similar to:

slapd®*?%: conn=1047 fd=20 ACCEPT from IP=xxx.xx.xxx.xx:57922 (IP=0.0.0.0:389)
slapd®2%: conn=1047 op=0 EXT oid=1.3.6.1.4.1.1466.20037

slapd®2%: conn=1047 op=0 STARTTLS

slapd®2°: conn=1047 op=0 RESULT oid= err=0 text=

slapd®*2°: conn=1047 fd=20 TLS established tls_ssf=128 ssf=128

slapd®*?%: conn=1047 op=1 BIND dn="cn=admin,dc=example,dc=com" method=128
slade: conn=1047 op=1 BIND dn="cn=admin,dc=example,dc=com" mech=SIMPLE ssf=0
slapd®2%: conn=1047 op=1 RESULT tag=97 err=0 text

1.10. LDAP Authentication

Once you have a working LDAP server, you will need to install libraries on the client that will know how and when to contact it. On
Ubuntu, this has been traditionally accomplishd by installing the libnss-ldap package. This package will bring in other tools that will
assist you in the configuration step.

Install libnss-ldap package now:

sudo apt-get install libnss-1ldap
You will be prompted for details of your LDAP server.

If you make a mistake you can try again using:
sudo dpkg-reconfigure ldap-auth-config

The results of the dialog can be seen in /etc/ldap.conf. If your server requires options not covered in the menu edit this file
accordingly.

Configure the LDAP profile for NSS:

sudo auth-client-config -t nss -p lac_ldap

Configure the system to use LDAP for authentication:

sudo pam—auth-update

08/22/2025 15/19

From the menu, choose LDAP and any other authentication mechanisms you need.
You should now be able to log in using LDAP-based credentials.

LDAP clients will need to refer to multiple servers if replication is in use. In /etc/ldap.conf you
would have something like:

uri Idap://ldap01.example.com Idap://Idap02.example.com

The request will time out and the Consumer (Idap02) will attempt to be reached if the Provider (Idap01) becomes unresponsive.

If you are going to use LDAP to store Samba users you will need to configure the Samba server to
authenticate using LDAP. See Section 2, “Samba and LDAP” for detalils.

An alternative to the libnss-ldap package is the libnss-ldapd package. This, however, will
bring in the nscd package which is problably not wanted. Simply remove it afterwards.

1.11. User and Group Management

The Idap-utils package comes with enough utilities to manage the directory but the long string of options needed can make them a
burden to use. The Idapscripts package contains wrapper scripts to these utilities that some people find easier to use.

Install the Idapscripts package:

sudo apt-get install ldapscripts

Then edit the file /etc/Idapscripts/Idapscripts.conf to arrive at something similar to the following:
SERVER=localhost

BINDDN='cn=admin, dc=example, dc=com'
BINDPWDFILE="/etc/ldapscripts/ldapscripts.passwd"
SUFFIX='dc=example, dc=com'

GSUFFIX='ou=Groups'

USUFFIX='ou=People'

MSUFFIX='ou=Computers'

GIDSTART=10000

UIDSTART=10000

MIDSTART=10000

Create the Idapscripts.passwd file to allow rootDN access to the directory:

sudo sh -c "echo -n 'secret' > /etc/ldapscripts/ldapscripts.passwd"
sudo chmod 400 /etc/ldapscripts/ldapscripts.passwd

Replace “secret” with the actual password for your database's rootDN user.
The scripts are now ready to help manage your directory. Here are some examples of how to use them:

e Create a new user:
sudo ldapadduser george example

This will create a user with uid george and set the user's primary group (gid) to example

e Change a user's password:
sudo ldapsetpasswd george

Changing password for user uid=george,ou=People,dc=example,dc=com
New Password:
New Password (verify):

08/22/2025 16/19

e Delete a user:

sudo ldapdeleteuser george

e Add a group:

sudo ldapaddgroup ga

® Delete a group:

sudo ldapdeletegroup ga

® Add a user to a group:

sudo ldapaddusertogroup george da

You should now see a memberUid attribute for the qa group with a value of george.

* Remove a user from a group:

sudo ldapdeleteuserfromgroup george ga

The memberUid attribute should now be removed from the qa group.

e The Idapmodifyuser script allows you to add, remove, or replace a user's attributes. The script uses the same syntax as the
Idapmodify utility. For example:

sudo ldapmodifyuser george

1. About to modify the following entry :

dn: uid=george,ou=People,dc=example,dc=com

objectClass: account

objectClass: posixAccount

cn: george

uid: george

uidNumber: 1001

gidNumber: 1001

homeDirectory: /home/george

loginShell: /bin/bash

gecos: george

description: User account

userPassword:: eINTSEF9eXFsTFcyWlhwWkF1eGUybVdFWHZKRzJVMjFTSG9vcHk=
2. Enter your modifications here, end with CTRL-D.

dn: uid=george,ou=People,dc=example,dc=com

replace: gecos
gecos: George Carlin
The user's gecos should now be “George Carlin”.

A nice feature of Idapscripts is the template system. Templates allow you to customize the attributes of user, group, and machine
objectes.

08/22/2025 17/19

* To enable the user template edit /etc/Idapscripts/Idapscripts.conf changing:

UTEMPLATE="/etc/ldapscripts/ldapadduser.template"

There are sample templates in the /etc/Idapscripts directory. Copy or rename the Idapadduser.template.sample file to
/etc/Idapscripts/Idapadduser.template:

sudo cp /usr/share/doc/ldapscripts/examples/ldapadduser.template.sample \
/etc/ldapscripts/ldapadduser.template

Edit the new template to add the desired attributes. The following will create new users with an
objectClass of inetOrgPerson:

dn: uid=<user>,<usuffix>,<suffix>
objectClass: inetOrgPerson
objectClass: posixAccount
cn: <user>

sn: <ask>

uid: <user>

uidNumber: <uid>
gidNumber: <gid>
homeDirectory: <home>
loginShell: <shell>

gecos: <user>

description: User account
title: Employee

Notice the <ask> option used for the sn attribute. This will make Idapadduser prompt you for it's value.
There are utilities in the package that were not covered here. Here is a complete list:

Idaprenamemachine
Idapadduser
Idapdeleteuserfromgroup
Idapfinger

Idapid

Idapmodifyuser

ldaprenameuser
Islda

Idapaddusertogroup
Idapsetpasswd
Idapinit
Idapaddgroup

| r

Idapmodifygroup
Idapdeletemachine
ldaprenamegroup

Idapaddmachine
Idapmodifymachine

Idapsetprimarygroup
Idapdeleteuser

:

e o o o O

.

:

F

1.12. Backup and Restore
Now we have Idap running just the way we want, it is time to ensure we can save all of our work and restore it as needed.
What we need is a way to backup the Idap database(s), specifically the backend (cn=config) frontend (dc=example,dc=com). If we

are going to backup those databases into, say, /export/backup, we could use slapcat as shown in the following script, called
/usr/local/bin/ldapbackup:

08/22/2025 18/19

http://manpages.ubuntu.com/manpages/en/man1/ldaprenamemachine.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldapadduser.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldapdeleteuserfromgroup.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldapfinger.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldapid.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldapgid.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldapmodifyuser.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldaprenameuser.1.html
http://manpages.ubuntu.com/manpages/en/man1/lsldap.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldapaddusertogroup.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldapsetpasswd.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldapinit.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldapaddgroup.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldapdeletegroup.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldapmodifygroup.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldapdeletemachine.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldaprenamegroup.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldapaddmachine.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldapmodifymachine.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldapsetprimarygroup.1.html
http://manpages.ubuntu.com/manpages/en/man1/ldapdeleteuser.1.html

#!/bin/bash
BACKUP_PATH=/export/backup
SLAPCAT=/usr/sbin/slapcat

nice
nice
nice

${SLAPCAT} -n 0 > ${BACKUP_PATH}/config.1ldif
S{SLAPCAT} -n 1 > S${BACKUP_PATH}/example.com.ldif
S{SLAPCAT} -n 2 > S${BACKUP_PATH}/access.ldif

chmod 640 ${BACKUP_PATH}/*.1dif

NOTE: These files are uncompressed text files containing everything in your Idap databases including the tree layout, usernames,
and every password. So, you might want to consider making /export/backup an encrypted partition and even having the script
encrypt those files as it creates them. Ideally you should do both, but that depends on your security requirements.

Then, it is just a matter of having a cron script to run this program as often as we feel comfortable with. For many, once a day
suffices. For others, more often is required. Here is an example of a cron script called /etc/cron.d/ldapbackup that is run every night
at 22:45h:

MAILTO=backup-emails@domain.com
45 22 * * * root /usr/local/bin/ldapbackup

Now the files are created, they should be copied to a backup server.

Assuming we did a fresh reinstall of Idap, the restore process could be something like this:

sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo

service slapd stop

mkdir /var/lib/ldap/accesslog

slapadd -F /etc/ldap/slapd.d -n 0 -1 /export/backup/config.ldif
slapadd -F /etc/ldap/slapd.d —-n 1 -1 /export/backup/domain.com.ldif
slapadd -F /etc/ldap/slapd.d -n 2 -1 /export/backup/access.ldif
chown -R openldap:openldap /etc/ldap/slapd.d/

chown —-R openldap:openldap /var/lib/ldap/

service slapd start

Related issues:
Related to GNU/Linux Administration - Support #99: Configure phpLDAPAdmin on ... Closed

03/17/2013

History

#1 - 03/17/2013 04:41 PM - Daniel Curtis

- Description updated

#2 - 03/17/2013 04:52 PM - Daniel Curtis

- Description updated

08/22/2025

19/19

http://www.tcpdf.org

