GNU/Linux Administration - Support #448

Experimenting with ZFS
09/01/2014 01:00 PM - Daniel Curtis

Status: Closed Start date: 09/01/2014
Priority: Normal Due date:

Assignee: Daniel Curtis % Done: 100%
Category: Network Attached Storage Estimated time: 2.00 hours
Target version: Spent time: 3.50 hours
Description

This article covers some basic tasks and usage of ZFS. It differs from the main article ZFS somewhat in that the examples herein are
demonstrated on a zpool built from virtual disks. So long as users do not place any critical data on the resulting zpool, they are free
to experiment without fear of actual data loss.

The examples in this article are shown with a set of virtual discs known in ZFS terms as VDEVs. Users may create their VDEVs
either on an existing physical disk or in tmpfs (RAMdisk) depending on the amount of free memory on the system.

NOTE: Using a file as a VDEV is a great method to play with ZFS but isn't viable strategy for storing "real" data.

Install the ZFS Family of Packages

Due to differences in licencing, ZFS bins and kernel modules are easily distributed from source, but no-so-easily packaged as
pre-compiled sets. The requisite packages are available in the AUR and in an unofficial repo.

Creating and Destroying Zpools

e Management of ZFS is pretty simplistic with only two utils needed:

/usr/bin/zpool
/usr/bin/zfs

Mirror

For zpools with just two drives, it is recommended to use ZFS in mirror mode which functions like a RAIDO mirroring the data. While
this configuration is fine, higher RAIDZ levels are recommended.

RAIDZ1

The minimum number of drives for a RAIDZ1 is three. It's best to follow the "power of two plus parity" recommendation. This is for
storage space efficiency and hitting the "sweet spot" in performance. For RAIDZ-1, use three (2+1), five (4+1), or nine (8+1) disks.
This example will use the most simplistic set of (2+1).
® Create 3 x 2G files to serve as virtual hardrives:
for 1 in {1..3}; do truncate -s 2G /scratch/$i.img; done
e Assemble the RAIDZ1:
zpool create zpool raidzl /scratch/l.img /scratch/2.img /scratch/3.img

* Notice that a 3.91G zpool has been created and mounted for us:

zfs list

04/18/2024 19

o Example

NAME
test

output:

USED AVAIL REFER MOUNTPOINT

139K 3.91G 38.6K /zpool

e The status of the device can be queried:

zpool status zpool

o Example output:
pool: zpool
state: ONLINE
scan: none requested
config:
NAME STATE
zpool ONLINE
raidz1-0 ONLINE

errors:

/scratch/1l.img ONLINE
/scratch/2.img ONLINE
/scratch/3.img ONLINE

No known data errors

READ WRITE CKSUM

0

o O O O

® To destroy a zpool:

zpool destroy zpool

RAIDZ2 and RAIDZ3

0 0
0 0
0 0
0 0
0 0

Higher level ZRAIDs can be assembled in a like fashion by adjusting the for statement to create the image files, by specifying
"raidz2" or "raidz3" in the creation step, and by appending the additional image files to the creation step.

Summarizing Toponce's guidance:

e RAIDZ2 should use four (2+2), six (4+2), ten (8+2), or eighteen (16+2) disks.
¢ RAIDZ3 should use five (2+3), seven (4+3), eleven (8+3), or nineteen (16+3) disks.

Displaying and Setting Properties

Without specifying them in the creation step, users can set properties of their zpools at any time after its creation using /usr/bin/zfs.

Show Properties

e To see the current properties of a given zpool:

zfs get all zpool

o Example output:

NAME PROPERTY
zpool type

zpool creation
zpool used

zpool available
zpool referenced

04/18/2024

VALUE
filesystem
Sun Oct 20
139K
3.91G
38.6K

8:46 2013

SOURCE

2/9

zpool compressratio 1.00x

zpool mounted yes
zpool quota none
zpool reservation none
zpool recordsize 128K
zpool mountpoint /zpool
zpool sharenfs off
zpool checksum on
zpool compression off
zpool atime on
zpool devices on
zpool exec on
zpool setuid on
zpool readonly off
zpool zoned off
zpool snapdir hidden
zpool aclinherit restricted
zpool canmount on
zpool xattr on
zpool copies 1
zpool version 5
zpool utf8only off
zpool normalization none
zpool casesensitivity sensitive
zpool vscan off
zpool nbmand off
zpool sharesmb off
zpool refquota none
zpool refreservation none
zpool primarycache all
zpool secondarycache all
zpool usedbysnapshots 0
zpool usedbydataset 38.6K
zpool usedbychildren 99.9K
zpool usedbyrefreservation 0
zpool logbias latency
zpool dedup off
zpool mlslabel none
zpool sync standard
zpool refcompressratio 1.00x
zpool written 38.6K
zpool snapdev hidden
Modify properties

¢ Disable the recording of access time in the zpool:

zfs set atime=off zpool

e Verify that the property has been set on the zpool:

zfs get atime

o Example output:

NAME PROPERTY VALUE SOURCE
zpool atime off local

Tip: This option like many others can be toggled off when creating the zpool as well by appending the following to the creation step:

-0 atime-off

04/18/2024

default
default
default
default
default
default
default
default
default
default
default
default
default
default
default
default
default
default

default
default
default
default
default
default
default

default
default
default
default

default

3/9

Add Content to the Zpool and Query Compression Performance

¢ Fill the zpool with files. For this example, first enable compression. ZFS uses many compression types, including, Izjb, gzip,
gzip-N, zle, and 1z4. Using a setting of simply 'on' will call the default algorithm (Izjb) but 1z4 is a nice alternative.

zfs set compression=1z4 zpool
NOTE: See the zfs man page for more.
® |n this example, the linux source tarball is copied over and since 1z4 compression has been enabled on the zpool, the

corresponding compression ratio can be queried as well.

wget https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.11.tar.xz
tar xJf linux-3.1ll.tar.xz -C /zpool

e To see the compression ratio achieved:

zfs get compressratio

o Example output:

NAME PROPERTY VALUE SOURCE
zpool compressratio 2.32x -

Simulate a Disk Failure and Rebuild the Zpool

e To simulate catastrophic disk failure (i.e. one of the HDDs in the zpool stops functioning), zero out one of the VDEVs.
dd if=/dev/zero of=/scratch/2.img bs=4M count=1 2>/dev/null
e Since we used a blocksize (bs) of 4M, the once 2G image file is now a mere 4M:

ls -1lh /scratch

o Example output:

total 317M

-rw-r——-r—— 1 facade users 2.0G Oct 20 09:13 1l.img
-rw-r—--r—-— 1 facade users 4.0M Oct 20 09:09 2.img
-rw-r—--r—-— 1 facade users 2.0G Oct 20 09:13 3.img

e The zpool remains online despite the corruption. Note that if a physical disc does fail, dmesg and related logs would be full of
errors. To detect when damage occurs, users must execute a scrub operation.

zpool scrub zpool

e Depending on the size and speed of the underlying media as well as the amount of data in the zpool, the scrub may take hours
to complete. The status of the scrub can be queried:

zpool status zpool

o Example output:

04/18/2024 4/9

pool: zpool
state: DEGRADED
status: One or more devices could not be used because the label is missing or
invalid. Sufficient replicas exist for the pool to continue
functioning in a degraded state.
action: Replace the device using 'zpool replace'.
see: http://zfsonlinux.org/msg/ZFS-8000-4J
scan: scrub repaired 0 in OhOm with 0 errors on Sun Oct 20 09:13:39 2013

config:
NAME STATE READ WRITE CKSUM
zpool DEGRADED 0 0
raidz1-0 DEGRADED

/scratch/1l.img ONLINE
/scratch/2.img UNAVAIL
/scratch/3.img ONLINE

corrupted data

o O O O
o O O O
o O O O o

errors: No known data errors

® Since we zeroed out one of our VDEVSs, let's simulate adding a new 2G HDD by creating a new image file and adding it to the
zpool:

truncate -s 2G /scratch/new.img
zpool replace zpool /scratch/2.img /scratch/new.img

e Upon replacing the VDEV with a new one, zpool rebuilds the data from the data and parity info in the remaining two good
VDEVs. Check the status of this process:
zpool status zpool
o Example output:
pool: zpool

state: ONLINE
scan: resilvered 117M in OhOm with O errors on Sun Oct 20 09:21:22 2013

config:
NAME STATE READ WRITE CKSUM
zpool ONLINE 0 0 0
raidz1-0 ONLINE 0 0 0
/scratch/1.img ONLINE 0 0 0
/scratch/new.img ONLINE 0 0 0
/scratch/3.1img ONLINE 0 0 0

errors: No known data errors

Snapshots and Recovering Deleted Files

Since ZFS is a copy-on-write filesystem, every file exists the second it is written. Saving changes to the very same file actually
creates another copy of that file (plus the changes made). Snapshots can take advantage of this fact and allow users access to older
versions of files provided a snapshot has been taken.

NOTE: When using snapshots, many Linux programs that report on filesystem space such as df will report inaccurate results due to
the unique way snapshots are used on ZFS. The output of /usr/bin/zfs list will deliver an accurate report of the amount of available
and free space on the zpool.

To keep this simple, we will create a dataset within the zpool and snapshot it. Snapshots can be taken either of the entire zpool or of
a dataset within the pool. They differ only in their naming conventions:

04/18/2024 5/9

e Snapshot Target: Snapshot Name
o Entire zpool: zpool@snapshot-name
o Dataset: zpool/dataset@snapshot-name

¢ Make a new data set and take ownership of it.

zfs create zpool/docs
chown facade:users /zpool/docs

NOTE: The lack of a proceeding / in the create command is intentional, not a typo!

Time 0

* Add some files to the new dataset (/zpool/docs):

wget -0 /zpool/docs/Moby_Dick.txt http://www.gutenberg.org/ebooks/2701.txt.utf-8
wget -0 /zpool/docs/War_and_Peace.txt http://www.gutenberg.org/ebooks/2600.txt.utf-8
wget -0 /zpool/docs/Beowulf.txt http://www.gutenberg.org/ebooks/16328.txt.utf-8

¢ Now check the status of the datasets:

zfs list

o Example output:

NAME USED AVAIL REFER MOUNTPOINT
zpool 5.06M 3.91G 40.0K /zpool
zpool/docs 4.92M 3.91G 4.92M /zpool/docs

This is showing that we have 4.92M of data used by our books in /zpool/docs.

Time +1

e Now take a snapshot of the dataset:
zfs snapshot zpool/docs@001
e Again run the list command:

zfs list
o Example output:
NAME USED AVAIL REFER MOUNTPOINT

zpool 5.07M 3.91G 40.0K /zpool
zpool/docs 4.92M 3.91G 4.92M /zpool/docs

NOTE: That the size in the USED col did not change showing that the snapshot take up no space in the zpool since
nothing has changed in these three files.

e We can list out the snapshots like so and again confirm the snapshot is taking up no space, but instead refers to files from the
originals that take up, 4.92M (their original size):

zfs list -t snapshot

04/18/2024 6/9

o Example output:

NAME USED AVAIL REFER MOUNTPOINT
zpool/docs@001 0 - 4.92M -

Time +2

* Now let's add some additional content and create a new snapshot:

wget —-O /zpool/docs/Les_Mis.txt http://www.gutenberg.org/ebooks/135.txt.utf-8
zfs snapshot zpool/docs@002

e Generate the new list to see how the space has changed:

zfs list -t snapshot

o Example output:

NAME USED AVAIL REFER MOUNTPOINT
zpool/docs@001 25.3K - 4.92M -
zpool/docs@002 0 - 8.17M -

Here we can see that the 001 snapshot takes up 25.3K of metadata and still points to the original 4.92M of data, and the new
snapshot takes-up no space and refers to a total of 8.17M.

Time +3

* Now let's simulate an accidental overwrite of a file and subsequent data loss:

echo "this book sucks" > /zpool/docs/War_and_Peace.txt

e Again, take another snapshot:

zfs snapshot zpool/docs@003

* Now list out the snapshots and notice the amount of referred to decreased by about 3.1M:

zfs list -t snapshot

o Example output:

NAME USED AVAIL REFER MOUNTPOINT
zpool/docs@001 25.3K - 4.92M -
zpool/docs@002 25.5K - 8.17M -
zpool/docs@003 0 - 5.04M -

e We can easily recover from this situation by looking inside one or both of our older snapshots for good copy of the file. ZFS
stores its snapshots in a hidden directory under the zpool: /zpool/files/.zfs/snapshot:

ls -1 /zpool/docs/.zfs/snapshot

04/18/2024 7/9

o Example output:

total 0

dr-xr-xr-x 1 root root 0 Oct 20 16:09 001
dr-xr-xr-x 1 root root 0 Oct 20 16:09 002
dr-xr-xr-x 1 root root 0 Oct 20 16:09 003

e We can copy a good version of the book back out from any of our snapshots to any location on or off the zpool:

cp /zpool/docs/.zfs/snapshot/002/War_and_Peace.txt /zpool/docs

NOTE: Using <TAB> for autocompletion will not work by default but can be changed by modifying the snapdir property on the

pool or dataset.

zfs set snapdir=visible zpool/docs

* Now enter a snapshot dir or two:

cd /zpool/docs/.zfs/snapshot/001
cd /zpool/docs/.zfs/snapshot/002

* Repeat the df command:

df -h | grep zpool

o Example output:

zpool 4.0G 0 4.0G 0% /zpool

zpool/docs 4.06 5.0M 4.0G 1% /zpool/docs

zpool/docs@001 4.0G 4.9M 4.0G 1% /zpool/docs/.zfs/snapshot/001
zpool/docs@002 4.0G 8.2M 4.0G 1% /zpool/docs/.zfs/snapshot/002

NOTE: Seeing each dir under .zfs the user enters is reversible if the zpool is taken offline and then remounted or if the server is
rebooted.

® For example:

zpool export zpool
zpool import -d /scratch/ zpool
df -h | grep zpool

o Example output:

zpool 4.0G 0 4.0G 0% /zpool
zpool/docs 4.06 5.0M 4.0G 1% /zpool/docs

Time +4

e Now that everything is back to normal, we can create another snapshot of this state:

zfs snapshot zpool/docs@004

04/18/2024 8/9

e And the list now becomes:

zfs list -t snapshot

o Example output:

NAME USED

zpool/docs@001 25.3K
zpool/docs@002 25.5K
zpool/docs@003 155K
zpool/docs@004 0

Deleting Snapshots

AVAIL REFER MOUNTPOINT

.92M -
A7 -
.04M -
1M -

O U1 O

The limit to the number of snapshots users can save is 2"64.

Snapshots can be deleted like so:
zfs destroy zpool/docs@001
zfs list -t snapshot
e Example output:
NAME USED
zpool/docs@002 3.28M

zpool/docs@003 155K
zpool/docs@004 0

Resources

AVAIL

8.
Sf
8.

REFER MOUNTPOINT
1™ -
04M -
1M -

e https://wiki.archlinux.org/index.php/Experimenting_with_ ZFS

History

#1 - 11/14/2014 02:53 PM - Daniel Curtis
- Status changed from New to Resolved

- % Done changed from 0 to 100

#2 - 12/12/2014 09:49 AM - Daniel Curtis

- Description updated

#3 - 12/12/2014 10:04 AM - Daniel Curtis

- Status changed from Resolved to Closed

#4 - 02/21/2015 11:57 AM - Daniel Curtis
- Description updated

- Category set to Network Attached Storage

#5 - 02/21/2015 11:59 AM - Daniel Curtis
- Description updated

#6 - 02/21/2015 12:00 PM - Daniel Curtis

- Description updated

04/18/2024

99

https://wiki.archlinux.org/index.php/Experimenting_with_ZFS
http://www.tcpdf.org

