GNU/Linux Administration - Support #307

OpenSSL Command-Line Howto
01/15/2014 09:29 PM - Daniel Curtis

Status: Closed Start date: 01/15/2014
Priority: Normal Due date:

Assignee: Daniel Curtis % Done: 100%
Category: Estimated time: 1.00 hour
Target version: Spent time: 1.00 hour
Description

The openssl application that ships with the OpenSSL libraries can perform a wide range of crypto operations. This HOWTO provides
some cookbook-style recipes for using it.

Introduction

The openssl command-line binary that ships with the OpenSSL libraries can perform a wide range of cryptographic operations. It can
come in handy in scripts or for accomplishing one-time command-line tasks.

Documentation for using the openssl application is somewhat scattered, however, so this article aims to provide some practical
examples of its use. | assume that you’'ve already got a functional OpenSSL installation and that the openssl binary is in your shell’s
PATH.

Just to be clear, this article is strictly practical; it does not concern cryptographic theory and concepts. If you don’t know what an MD5
sum is, this article won'’t enlighten you one bit—but if all you need to know is how to use openssl to generate a file sum, you're in
luck.

The nature of this article is that I'll be adding new examples incrementally. Check back at a later date if | haven’t gotten to the
information you need.
How do | find out what OpenSSL version I'm running?

Use the version option:

openssl version

OpenSSL 0.9.8b 04 May 2006
You can get much more information with the version -a option.

openssl version -a

OpenSSL 0.9.8b 04 May 2006

built on: Fri Sep 29 18:45:58 UTC 2006

platform: debian-i386-i686/cmov

options: bn(64,32) md2(int) rc4(idx,int) des(ptr,risc1,16,long) blowfish(idx)

compiler: gcc -fPIC -DOPENSSL_PIC -DZLIB -DOPENSSL_THREADS -D_REENTRANT
-DDSO_DLFCN -DHAVE_DLFCN_H -DL_ENDIAN -DTERMIO -O3 -march=i686
-Wa,--noexecstack -g -Wall -DOPENSSL_BN_ASM_PART_WORDS -DOPENSSL_IA32_SSE2
-DSHA1_ASM -DMD5_ASM -DRMD160_ASM -DAES_ASM

OPENSSLDIR: "/usr/lib/ssl"

How do | get a list of the available commands?

There are three built-in options for getting lists of available commands, but none of them provide what | consider useful output. The
best thing to do is provide an invalid command (help or -h will do nicely) to get a readable answer.

openssl help

04/18/2024 1/19

openssl:Error: 'help' is an invalid command.

Standard commands

asniparse ca ciphers crl crl2pkes7
dgst dh dhparam dsa dsaparam
ec ecparam enc engine errstr
gendh gendsa genrsa nseq ocsp
passwd pkcs12 pkcs7 pkcs8 prime
rand req rsa rsautl s_client
s_server s_time sess_id smime speed
spkac verify version x509

Message Digest commands (see the “dgst' command for more details)
md2 md4 md5 rmd160 sha
shai

Cipher commands (see the “enc' command for more details)
aes-128-cbc aes-128-ecb aes-192-cbc aes-192-ecb aes-256-cbc

aes-256-ecb base64 bf bf-cbc bf-cfb
bf-ecb bf-ofb cast cast-cbc cast5-cbc
castb-cfb castb-ecb cast5-ofb des des-cbc

des-cfb des-ecb des-ede des-ede-cbc des-ede-cfb
des-ede-ofb des-ede3 des-ede3-cbc des-ede3-cfb des-ede3-ofb

des-ofb des3 desx rc2 rc2-40-cbc
rc2-64-cbc rc2-cbc rc2-cfb rc2-ecb rc2-ofb
rc4 rc4-40

What the shell calls “Standard commands” are the main top-level options.

You can use the same trick with any of the subcommands.

openssl dgst -h

unknown option "-h’

options are

-C to output the digest with separating colons
-d to output debug info

-hex output as hex dump

-binary output in binary form

-sign file sign digest using private key in file

-verify file verify a signature using public key in file
-prverify file verify a signature using private key in file
-keyform arg key file format (PEM or ENGINE)
-signature file signature to verify

-binary output in binary form

-engine e use engine e, possibly a hardware device.
-md>5 to use the md5 message digest algorithm (default)
-md4 to use the md4 message digest algorithm

-md2 to use the md2 message digest algorithm

-sha1 to use the shal message digest algorithm

-sha to use the sha message digest algorithm

-sha256 to use the sha256 message digest algorithm
-sha512 to use the sha512 message digest algorithm
-mdc2 to use the mdc2 message digest algorithm
-ripemd160 to use the ripemd160 message digest algorithm

In more boring fashion, you can consult the OpenSSL man pages.
How do | get a list of available ciphers?
Use the ciphers option. The ciphers(1) man page is quite helpful.

o |ist all available ciphers

04/18/2024

2/19

openssl ciphers -v

e |ist only TLSv1 ciphers
openssl ciphers -v -tlsl

e list only high encryption ciphers (keys larger than 128 bits)
openssl ciphers -v 'HIGH'

e list only high encryption ciphers using the AES algorithm

openssl ciphers -v 'AES+HIGH'

Benchmarking

How do | benchmark my system’s performance?

The OpenSSL developers have built a benchmarking suite directly into the openssl binary. It's accessible via the speed option. It
tests how many operations it can perform in a given time, rather than how long it takes to perform a given number of operations. This
strikes me a quite sane, because the benchmarks don’t take significantly longer to run on a slow system than on a fast one.

To run a catchall benchmark, run it without any further options.

openssl speed

There are two sets of results. The first reports how many bytes per second can be processed for each algorithm, the second the
times needed for sign/verify cycles. Here are the results on an 2.16GHz Intel Core 2.

The 'numbers' are in 1000s of bytes per second processed.

type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

md2 1736.10k 3726.08k 5165.04k 5692.28k 5917.35k

mdc2 0.00 0.00 0.00 0.00 0.00

md4 18799.87k 65848.23k 187776.43k 352258.73k 474622.63k
md5 16807.01k 58256.45k 160439.13k 287183.53k 375220.91k
hmac(md>5) 23601.24k 74405.08k 189993.05k 309777.75k 379431.59k
sha 16774.59k 55500.39k 142628.69k 233247.74k 288382.98k
rmd160 13854.71k 40271.23k 87613.95k 124333.06k 141781.67k
rc4 227935.60k 253366.06k 261236.94k 259858.09k 194928.50k

des cbc 48478.10k 49616.16k 49765.21k 50106.71k 50034.01k
des ede3 18387.39k 18631.02k 18699.26k 18738.18k 18718.72k
idea cbc 0.00 0.00 0.00 0.00 0.00

rc2 cbc 19247.24k 19838.12k 19904.51k 19925.33k 19834.98k
rc5-32/12 cbe 0.00 0.00 0.00 0.00 0.00

blowfish cbc 79577.50k 83067.03k 84676.78k 84850.01k 85063.00k
cast cbc 45362.14k 48343.34k 49007.36k 49202.52k 49225.73k
aes-128 cbc 58751.94k 94443.86k 111424.09k 116704.26k 117997.57k
aes-192cbc 53451.79k 82076.22k 94609.83k 98496.85k 99150.51k
aes-256 cbc 4922521k 72779.84k 82266.88k 85054.81k 85762.05k
sha256 9359.24k 22510.83k 40963.75k 51710.29k 56014.17k
sha512 7026.78k 28121.32k 54330.79k 86190.76k 104270.51k
sign verify sign/s verify/s

rsa 512 bits 0.000522s 0.000042s 1915.8 23969.9

rsa 1024 bits 0.002321s 0.000109s 430.8 9191.1

rsa 2048 bits 0.012883s 0.000329s 77.6 3039.6

rsa 4096 bits 0.079055s 0.001074s 12.6 931.3

sign verify sign/s verify/s

dsa 512 bits 0.000380s 0.000472s 2629.3 2117.9

04/18/2024 3/19

dsa 1024 bits 0.001031s 0.001240s 969.6 806.2
dsa 2048 bits 0.003175s 0.003744s 314.9 267.1

You can run any of the algorithm-specific subtests directly.

o test rsa speeds

openssl speed rsa

e do the same test on a two-way SMP system

openssl speed rsa -multi 2

How do | benchmark remote connections?

The s_time option lets you test connection performance. The most simple invocation will run for 30 seconds, use any cipher, and use
SSL handshaking to determine number of connections per second, using both new and reused sessions:

openssl s_time -connect remote.host:443
Beyond that most simple invocation, s_time gives you a wide variety of testing options.

® retrieve remote test.html page using only new sessions

openssl s_time —-connect remote.host:443 -www /test.html —-new

e similar, using only SSL v3 and high encryption (see ciphers(1) man page for cipher strings)

openssl s_time \
—connect remote.host:443 -www /test.html -new \
-ssl3 -cipher HIGH

e compare relative performance of various ciphers in 10-second tests

IFS=":"
for ¢ in $(openssl ciphers -ssl3 RSA); do
echo Sc
openssl s_time —-connect remote.host:443 \
-www / —new —time 10 -cipher $c 2>&1 | \
grep bytes
echo
done

If you don’t have an SSL-enabled web server available for your use, you can emulate one using the s_server option.

e on one host, set up the server (using default port 4433)

openssl s_server —-cert mycert.pem —-www

e on second host (or even the same one), run s_time

openssl s_time -connect myhost:4433 -www / —-new -ssl3

04/18/2024 4/19

Certificates

How do | generate a self-signed certificate?
You'll first need to decide whether or not you want to encrypt your key. Doing so means that the key is protected by a passphrase.

On the plus side, adding a passphrase to a key makes it more secure, so the key is less likely to be useful to someone who steals it.
The downside, however, is that you’ll have to either store the passphrase in a file or type it manually every time you want to start your
web or Idap server.

It violates my normally paranoid nature to say it, but | prefer unencrypted keys, so | don’t have to manually type a passphrase each
time a secure daemon is started. (It’s not terribly difficult to decrypt your key if you later tire of typing a passphrase.)

This example will produce a file called mycert.pem which will contain both the private key and the public certificate based on it. The
certificate will be valid for 365 days, and the key (thanks to the -nodes option) is unencrypted:

openssl req \
-x509 -nodes -days 365 \
-newkey rsa:1024 -keyout mycert.pem -out mycert.pem

Using this command-line invocation, you’ll have to answer a lot of questions: Country Name, State, City, and so on. The tricky
question is Common Name. You'll want to answer with the hostname or CNAME by which people will address the server. This is
very important. If your web server’s real hostname is mybox.mydomain.com but people will be using www.mydomain.com to
address the box, then use the latter name to answer the “Common Name” question.

Once you're comfortable with the answers you provide to those questions, you can script the whole thing by adding the -subj option.
I've included some information about location into the example that follows, but the only thing you really need to include for the
certificate to be useful is the hostname (CN):

openssl req \
-x509 -nodes —-days 365 \
-subj '/C=US/ST=0Oregon/L=Portland/CN=www.madboa.com"' \
-newkey rsa:1024 -keyout mycert.pem -out mycert.pem

How do | generate a certificate request for VeriSign?

Applying for a certificate signed by a recognized certificate authority like VeriSign is a complex bureaucratic process. You've got to
perform all the requisite paperwork before creating a certificate request.

As in the recipe for creating a self-signed certificate, you’ll have to decide whether or not you want a passphrase on your private key.

The recipe below assumes you don’t. You'll end up with two files: a new private key called mykey.pem and a certificate request
called myreq.pem:

openssl req \
-new -newkey rsa:1024 -nodes \
—keyout mykey.pem -out myreqg.pem

If you've already got a key and would like to use it for generating the request, the syntax is a bit simpler.

openssl reqg —new —-key mykey.pem —-out myreqg.pem
Similarly, you can also provide subject information on the command line.
openssl req \
-new -newkey rsa:1024 -nodes \
-subj '/CN=www.mydom.com/O=My Dom, Inc./C=US/ST=Oregon/L=Portland' \

—keyout mykey.pem —-out myreq.pem

When dealing with an institution like VeriSign, you need to take special care to make sure that the information you provide during the
creation of the certificate request is exactly correct. | know from personal experience that even a difference as trivial as substituting

04/18/2024 5/19

http://www.mydomain.com

“and” for “&” in the Organization Name will stall the process.
If you'd like, you can double check the signature and information provided in the certificate request.

® verify signature

openssl req -in myreqg.pem -noout -verify -key mykey.pem

e check info

openssl reqg —in myreq.pem —-noout -text

Save the key file in a secure location. You'll need it in order to use the certificate VeriSign sends you. The certificate request will
typically be pasted into VeriSign’s online application form.

How do | test a new certificate?

The s_server option provides a simple but effective testing method. The example below assumes you’ve combined your key and
certificate into one file called mycert.pem.

First, launch the test server on the machine on which the certificate will be used. By default, the server will listen on port 4433; you
can alter that using the -accept option.

openssl s_server —cert mycert.pem —-www

If the server launches without complaint, then chances are good that the certificate is ready for production use.

You can also point your web browser at the test server, e.g., https://yourserver:4433/. Don'’t forget to specify the “https” protocol;

plain-old “http” won’t work. You should see a page listing the various ciphers available and some statistics about your connection.
Most modern browsers allow you to examine the certificate as well.

How do | retrieve a remote certificate?
If you combine openssl and sed, you can retrieve remote certificates via a shell one-liner or a simple script.

#!/bin/sh

#

usage: retrieve-cert.sh remote.host.name [port]
#

REMHOST=S$1

REMPORT=${2:-443}

echo |\
openssl s_client -connect ${REMHOST}:${REMPORT} 2>&1 |\
sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p'

You can, in turn, pipe that information back to openssl to do things like check the dates on all your active certificates.

#!/bin/sh

#

for CERT in \
www.yourdomain.com:443 \
ldap.yourdomain.com: 636 \
imap.yourdomain.com: 993

do
echo |\
openssl s_client -connect ${CERT} 2>/dev/null |\
sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' |\
openssl x509 -noout -subject -dates

done

04/18/2024 6/19

https://yourserver:4433/

How do | extract information from a certificate?

An SSL certificate contains a wide range of information: issuer, valid dates, subject, and some hardcore crypto stuff. The x509
subcommand is the entry point for retrieving this information. The examples below all assume that the certificate you want to
examine is stored in a file named cert.pem.

Using the -text option will give you the full breadth of information.

openssl x509 -text —-in cert.pem
Other options will provide more targeted sets of data:

e who issued the cert?

openssl x509 -noout -in cert.pem -issuer

e to whom was it issued?

openssl x509 -noout -in cert.pem -subject

e for what dates is it valid?

openssl x509 -noout -in cert.pem -dates

e the above, all at once

openssl x509 -noout —-in cert.pem -issuer -subject -dates

e what is its hash value?

openssl x509 -noout -in cert.pem -hash

® what is its MD5 fingerprint?

openssl x509 -noout -in cert.pem -fingerprint

How do | export or import a PKCS#12 certificate?

PKCS#12 files can be imported and exported by a number of applications, including Microsoft IIS. They are often associated with the
file extension .pfx.

To create a PKCS#12 certificate, you'll need a private key and a certificate. During the conversion process, you'll be given an
opportunity to put an “Export Password” (which can be empty, if you choose) on the certificate.

e create a file containing key and self-signed certificate

openssl req \
-x509 -nodes -days 365 \
-newkey rsa:1024 -keyout mycert.pem -out mycert.pem

e export mycert.pem as PKCS#12 file, mycert.pfx

04/18/2024 7/19

openssl pkcsl2 —-export \
—out mycert.pfx —-in mycert.pem \
—-name "My Certificate"

If someone sends you a PKCS#12 and any passwords needed to work with it, you can export it into standard PEM format.

e export certificate and passphrase-less key
openssl pkcsl2 -in mycert.pfx -out mycert.pem -nodes
e same as above, but you'll be prompted for a passphrase for the private key

openssl pkcsl2 -in mycert.pfx -out mycert.pem

Certificate Verification

Applications linked against the OpenSSL libraries can verify certificates signed by a recognized certificate authority (CA).

How do | verify a certificate?

Use the verify option to verify certificates

openssl verify cert.pem

If your local OpenSSL installation recognizes the certificate or its signing authority and everything else (dates, signing chain, etc.)
checks out, you'll get a simple OK message.

openssl verify remote.site.pem

remote.site.pem: OK

If anything is amiss, you'll see some error messages with short descriptions of the problem:

error 10 at 0 depth lookup:certificate has expired. Certificates are typically issued for a limited period of time—usually just one
year—and openssl| will complain if a certificate has expired.

error 18 at 0 depth lookup:self signed certificate. Unless you make an exception, OpenSSL won't verify a self-signed certificate.

What certificate authorities does OpenSSL recognize?
When OpenSSL was built for your system, it was configured with a “Directory for OpenSSL files.” (That’s the --openssl|dir option
passed to the configure script, for you hands-on types.) This is the directory that typically holds information about certificate
authorities your system trusts.
The default location for this directory is /usr/local/ssl, but most vendors put it elsewhere:

e /ust/share/ssl| - Red Hat/Fedora

® /etc/ssl - Gentoo

e /usr/lib/ss| - Debian

¢ /System/Library/OpenSSL - Macintosh OS X

Use the version option to identify which directory (labeled OPENSSLDIR) your installation uses

openssl version -d

04/18/2024 8/19

Within that directory and a subdirectory called certs, you're likely to find one or more of three different kinds of files.

1. A large file called cert.pem, an omnibus collection of many certificates from recognized certificate authorities like VeriSign and
Thawte.

2. Some small files in the certs subdirectory named with a .pem file extension, each of which contains a certificate from a single
CA.

3. Some symlinks in the certs subdirectory with obscure filenames like 052eae11.0. There is typically one of these links for each
.pem file.

The first part of obscure filename is actually a hash value based on the certificate within the .pem file to which it points. The file
extension is just an iterator, since it's theoretically possible that multiple certificates can generate identical hashes.

On my Gentoo system, for example, there’s a symlink named 73e89fd.0 that points to a file named vsignss.pem. Sure enough, the
certificate in that file generates a hash the equates to the name of the symlink:

openssl x509 -noout -hash -in vsignss.pem

f73e89fd

When an application encounters a remote certificate, it will typically check to see if the cert can be found in cert.pem or, if not, in a file
named after the certificate’s hash value. If found, the certificate is considered verified.

It's interesting to note that some applications, like Sendmail, allow you to specify at runtime the location of the certificates you trust,
while others, like Pine, do not.
How do | get OpenSSL to recognize/verify a certificate?

Put the file that contains the certificate you’d like to trust into the certs directory discussed above. Then create the hash-based
symlink. Here’s a little script that’ll do just that.

#!/bin/sh
#

usage: certlink.sh filename [filename ...]

for CERTFILE in $*; do
make sure file exists and is a valid cert

test —-f "S$CERTFILE" || continue
HASH=$ (openssl x509 —-noout —-hash -in "S$CERTFILE")
test —-n "$HASH" || continue

use lowest available iterator for symlink
for ITER in 0 1 2 3 4 5 6 7 8 9; do
test —-f "${HASH}.S{ITER}" && continue
In -s "S$CERTFILE" "${HASH}.S${ITER}"
test -L "${HASH}.S{ITER}" && break
done
done

Command-line clients and servers

The s_client and s_server options provide a way to launch SSL-enabled command-line clients and servers. There are other
examples of their use scattered around this document, but this section is dedicated solely to them.

In this section, | assume you are familiar with the specific protocols at issue: SMTP, HTTP, etc. Explaining them is out of the scope of
this article.

How do | connect to a secure SMTP server?

You can test, or even use, an SSL-enabled SMTP server from the command line using the s_client option.

Secure SMTP servers offer secure connections on up to three ports: 25 (TLS), 465 (SSL), and 587 (TLS). Some time around the
0.9.7 release, the openssl binary was given the ability to use STARTTLS when talking to SMTP servers.

e port 25/TLS; use same syntax for port 587

04/18/2024 9/19

openssl s_client -connect remote.host:25 -starttls smtp

e port 465/SSL

openssl s_client -connect remote.host:465

RFC821 suggests (although it falls short of explicitly specifying) the two characters "<CRLF>" as line-terminator. Most mail agents do
not care about this and accept either "<LF>" or "<CRLF>" as line-terminators, but Qmail does not. If you want to comply to the letter
with RFC821 and/or communicate with Qmail, use also the -crlf option:

openssl s_client -connect remote.host:25 -crlf -starttls smtp

How do | connect to a secure [whatever] server?

Connecting to a different type of SSL-enabled server is essentially the same operation as outlined above. As of the date of this
writing, openssl only supports command-line TLS with SMTP servers, so you have to use straightforward SSL connections with any
other protocol.

)

https: HTTP over SSL

openssl s_client -connect remote.host:443

e |daps: LDAP over SSL

openssl s_client —-connect remote.host:636

® imaps: IMAP over SSL

openssl s_client —-connect remote.host:993

e pop3s: POP-3 over SSL

openssl s_client -connect remote.host:995

How do | set up an SSL server from the command line?

The s_server option allows you to set up an SSL-enabled server from the command line, but it's | wouldn’t recommend using it for
anything other than testing or debugging. If you need a production-quality wrapper around an otherwise insecure server, check out
Stunnel instead.

The s_server option works best when you have a certificate; it’s fairly limited without one.

e the -www option will sent back an HTML-formatted status page to any HTTP clients that request a page

openssl s_server -cert mycert.pem —www

e the -WWW option "emulates a simple web server. Pages will be resolved relative to the current directory." This example is
listening on the https port, rather than the default port 4433

04/18/2024 10/19

openssl s_server —accept 443 -cert mycert.pem -WWW

Digests

Generating digests with the dgst option is one of the more straightforward tasks you can accomplish with the openssl binary.
Producing digests is done so often, as a matter of fact, that you can find special-use binaries for doing the same thing.

How do | create an MD5 or SHAT1 digest of a file?

Digests are created using the dgst option.

e MD5 digest

openssl dgst -md5 filename
e SHA1 digest

openssl dgst -shal filename

The MD5 digests are identical to those created with the widely available md5sum command, though the output formats differ.
openssl dgst —-md5 foo-2.23.tar.gz

MD5= 81eda7985e99d28acd6d286aale13e07

md5Ssum foo-2.23.tar.gz

81eda7985e99d28acd6d286aa0e13e07 foo-2.23.tar.gz

The same is true for SHA1 digests and the output of the shalsum application.
openssl dgst -shal foo-2.23.tar.gz

SHA1= e4eabc78894e2c204d788521812497e021f45c08

shalsum foo-2.23.tar.gz

edeabc78894e2c204d788521812497e021f45¢c08 foo-2.23.tar.gz

How do | sign a digest?

If you want to ensure that the digest you create doesn’t get modified without your permission, you can sign it using your private key.
The following example assumes that you want to sign the SHA1 sum of a file called foo-1.23.tar.gz.

e signed digest will be foo-1.23.tar.gz.shaft
openssl dgst -shal \
-sign mykey.pem
—-out foo-1.23.tar.gz.shal \
foo-1.23.tar.gz
How do | verify a signed digest?
To verify a signed digest you'll need the file from which the digest was derived, the signed digest, and the signer’s public key.

e to verify foo-1.23.tar.gz using foo-1.23.tar.gz.shal and pubkey.pem

04/18/2024 11/19

openssl dgst -shal \
-verify pubkey.pem \
-signature foo-1.23.tar.gz.shal \
foo-1.23.tar.gz

How do | create an Apache digest password entry?

Apache’s HTTP digest authentication feature requires a special password format. Apache ships with the htdigest utility, but it will only
write to a file, not to standard output. When working with remote users, it's sometimes nice for them to be able to generate a
password hash on a machine they trust and then mail it for inclusion in your local password database.

The format of the password database is relatively simple: a colon-separated list of the username, authorization realm (specified by
the Apache AuthName directive), and an MD5 digest of those two items and the password. Below is a script that duplicates the
output of htdigest, except that the output is written to standard output. It takes advantage of the dgst option’s ability to read from
standard input.

#!/bin/bash

echo "Create an Apache-friendly Digest Password Entry"

get user input, disabling tty echoing for password

read -p "Enter username: " UNAME
read -p "Enter Apache AuthName: " AUTHNAME
read -s -p "Enter password: " PWORD; echo

printf "\n%s:%$s:%s\n" \

"SUNAME" \
"SAUTHNAME" \
S (printf "${UNAME} :${AUTHNAME} :$S{PWORD}" | openssl dgst -md5)

What other kinds of digests are available?

Use the built-in list-message-digest-commands option to get a list of the digest types available to your local OpenSSL installation:

openssl list-message-digest-commands

Encryption/Decryption

How do | base64-encode something?
Use the enc -base64 option.

¢ send encoded contents of file.txt to stdout
openssl enc -base64 -in file.txt
® same, but write contents to file.txt.enc
openssl enc -base64 -in file.txt -out file.txt.enc
It's also possible to do a quick command-line encoding of a string value:

echo "encode me" | openssl enc -base64

ZW5ib2RIIG1ICg==

04/18/2024 12/19

Note that echo will silently attach a newline character to your string. Consider using its -n option if you want to avoid that situation,
which could be important if you're trying to encode a password or authentication string:

echo -n "encode me" | openssl enc -base64d

ZW5jb2RIIG1]

Use the -d (decode) option to reverse the process:

echo "ZW5jb2R1IG11Cg==" | openssl enc -base64 -d

encode me

How do | simply encrypt a file?

Simple file encryption is probably better done using a tool like GPG. Still, you may have occasion to want to encrypt a file without
having to build or use a key/certificate structure. All you want to have to remember is a password. It can nearly be that simple—if you
can also remember the cipher you employed for encryption.

To choose a cipher, consult the enc(1) man page. More simply (and perhaps more accurately), you can ask openssl for a list in one
of two ways.

see the list under the '‘Cipher commands' heading

openssl —h

e or get a long list, one cipher per line
openssl list-cipher—-commands
After you choose a cipher, you'll also have to decide if you want to base64-encode the data. Doing so will mean the encrypted data
can be, say, pasted into an email message. Otherwise, the output will be a binary file.
e encrypt file.txt to file.enc using 256-bit AES in CBC mode
openssl enc -aes-256-cbc -salt -in file.txt -out file.enc
e the same, only the output is base64 encoded for, e.g., e-mail

openssl enc -aes-256-cbc -a -salt -in file.txt -out file.enc

To decrypt file.enc you or the file’s recipient will need to remember the cipher and the passphrase.

® decrypt binary file.enc

openssl enc -d -aes-256-cbc -in file.enc

e decrypt base64-encoded version

openssl enc -d -aes-256-cbc -a —-in file.enc

04/18/2024 13/19

If you'd like to avoid typing a passphrase every time you encrypt or decrypt a file, the openssl(1) man page provides the details under
the heading “PASS PHRASE ARGUMENTS.” The format of the password argument is fairly simple.

¢ provide password on command line

openssl enc -aes-256-cbc -salt —-in file.txt \
-out file.enc -pass pass:mySillyPassword

e provide password in a file

openssl enc -aes-256-cbc -salt —-in file.txt \
—out file.enc -pass file:/path/to/secret/password.txt

Errors

How do | interpret SSL error messages?
Poking through your system logs, you see some error messages that are evidently related to OpenSSL or crypto:

sshd®84: error: RSA_public_decrypt failed: error:0407006A:lib(4):func(112):reason(106)
sshd”™: error: RSA_public_decrypt failed: error:0407006A:lib(4):func(112):reason(106)

The first step to figure out what's going wrong is to use the errstr option to intrepret the error code. The code number is found
between “error:” and “lib”. In this case, it's 0407006A.

openssl errstr 0407006A

error:0407006A:rsa routines:RSA_padding_check_PKCS1_type_1:block type is not 01

If you've got a full OpenSSL installation, including all the development documentation, you can start your investigation there. In this
example, the RSA_padding_add_PKCS1_type_1(3) man page will inform you that PKCS #1 involves block methods for signatures.
After that, of course, you'd need to pore through your application’s source code to identify when it would expect be receiving those

sorts of packets.

Keys
How do | generate an RSA key?

Use the genrsa option.

e default 512-bit key, sent to standard output
openssl genrsa

® 1024-bit key, saved to file named mykey.pem
openssl genrsa -out mykey.pem 1024

e same as above, but encrypted with a passphrase

openssl genrsa -des3 -out mykey.pem 1024

04/18/2024 14/19

How do | generate a public RSA key?

Use the rsa option to produce a public version of your private RSA key.

openssl rsa —-in mykey.pem -pubout
How do | generate a DSA key?

Building DSA keys requires a parameter file, and DSA verify operations are slower than their RSA counterparts, so they aren’t as
widely used as RSA keys.

If you’re only going to build a single DSA key, you can do so in just one step using the dsaparam subcommand.

® key will be called dsakey.pem
openssl dsaparam -noout -out dsakey.pem -genkey 1024
If, on the other hand, you'll be creating several DSA keys, you'll probably want to build a shared parameter file before generating the
keys. It can take a while to build the parameters, but once built, key generation is done quickly.
e create parameters in dsaparam.pem
openssl dsaparam -out dsaparam.pem 1024
e create first key
openssl gendsa -out keyl.pem dsaparam.pem

e and second ...

openssl gendsa -out key2.pem dsaparam.pem

How do | create an elliptic curve key?

Routines for working with elliptic curve cryptography were added to OpenSSL in version 0.9.8. Generating an EC key involves the
ecparam option.

openssl ecparam -out key.pem —-name prime256v1l -—-genkey

e openssl can provide full list of EC parameter names suitable for passing to the -name option above:

openssl ecparam -list_curves

How do | remove a passphrase from a key?

Perhaps you’ve grown tired of typing your passphrase every time your secure daemon starts. You can decrypt your key, removing
the passphrase requirement, using the rsa or dsa option, depending on the signature algorithm you chose when creating your private
key.

If you created an RSA key and it is stored in a standalone file called key.pem, then here’s how to output a decrypted version of the
same key to a file called newkey.pem.

e you'll be prompted for your passphrase one last time

04/18/2024 15/19

openssl rsa —-in key.pem -out newkey.pem
Often, you'll have your private key and public certificate stored in the same file. If they are stored in a file called mycert.pem, you can
construct a decrypted version called newcert.pem in two steps.

e you'll need to type your passphrase once more

openssl rsa —-in mycert.pem -out newcert.pem
openssl x509 -in mycert.pem >>newcert.pem

Password hashes

Using the passwd option, you can generate password hashes that interoperate with traditional /etc/passwd files, newer-style
/etc/shadow files, and Apache password files.
How do | generate a crypt-style password hash?

You can generate a new hash quite simply:

openssl passwd MySecret

8E4vgBR4UOYF.

“

If you know an existing password’s “salt,” you can duplicate the hash:

openssl passwd —-salt 8E MySecret

8E4vgBR4UOYF.

How do | generate a shadow-style password hash?

Newer Unix systems use a more secure MD5-based hashing mechanism that uses an eight-character salt (as compared to the
two-character salt in traditional crypt()-style hashes). Generating them is still straightforward using the -1 option:
openssl passwd -1 MySecret

1sXiKzkus$haDZ9JpVrRHBznY50xB82.

The salt in this format consists of the eight characters between the second and third dollar signs, in this case sXiKzkus. So you can
also duplicate a hash with a known salt and password.

openssl passwd -1 -salt sXiKzkus MySecret

1sXiKzkus$haDZ9JpVrRHBznY50xB82.

Prime numbers

Current cryptographic techniques rely heavily on the generation and testing of prime numbers, so it's no surprise that the OpenSSL
libraries contain several routines dealing with primes. Beginning with version 0.9.7e (or so), the prime option was added to the
openssl binary.

How do | test whether a number is prime?

Pass the number to the prime option. Note that the number returned by openssl| will be in hex, not decimal, format:

04/18/2024 16/19

openssl prime 119054759245460753

1A6F7AC39A53511 is not prime
You can also pass hex numbers directly.

openssl prime -hex 2f

2F is prime

How do | generate a set of prime humbers?
Pass a bunch of numbers to openssl and see what sticks. The seq utility is useful in this capacity.
e define start and ending points
AQUO=10000
ADQUEM=10100
for N in $(seq $AQUO S$ADQUEM); do
use bc to convert hex to decimal

openssl prime SN | awk '/is prime/ {print "ibase=16;"S$1}"' | bc
done

Random data

How do | generate random data?
Use the rand option to generate binary or base64-encoded data.

e write 128 random bytes of base64-encoded data to stdout
openssl rand -base64 128

¢ write 1024 bytes of binary random data to a file
openssl rand -out random-data.bin 1024

¢ seed openssl with semi-random bytes from browser cache

cd $(find ~/.mozilla/firefox -type d -name Cache)
openssl rand -rand $(find . -type f —-printf '$f:') -base64 1024

On a Unix box with a /dev/urandom device and a copy of GNU head, or a recent version of BSD head, you can achieve a similar
effect, often with better entropy:
e get 32 bytes from /dev/urandom and base64 encode them
head -c¢ 32 /dev/urandom | openssl enc -base64
You can get a wider variety of characters than what's offered using Base64 encoding by using strings:
1. get 32 bytes from /dev/random, grab printable characters, and

2. strip whitespace. using echo and the shell's command substitution
3. will nicely strip out newlines.

echo $(head -c 32 /dev/random | strings -1) | sed 's/[[:space:]1]1//g'

04/18/2024 17/19

Make sure you know the trade-offs between the random and urandom devices before relying on them for truly critical entropy.
Consult the random(4) man page on Linux and BSD systems, or random(7D) on Solaris, for further information.

S/MIME

S/MIME is a standard for sending and receiving secure MIME data, especially in e-mail messages. Automated S/MIME capabilities
have been added to quite a few e-mail clients, though openssl can provide command-line S/MIME services using the smime option.

Note that the documentation in the smime(1) man page includes a number of good examples.
How do | verify a signed S/MIME message?

It's pretty easy to verify a signed message. Use your mail client to save the signed message to a file. In this example, | assume that
the file is named msg.txt:
openssl smime -verify —-in msg.txt

If the sender’s certificate is signed by a certificate authority trusted by your OpenSSL infrastructure, you'll see some mail headers, a
copy of the message, and a concluding line that says Verification successful.

If the messages has been modified by an unauthorized party, the output will conclude with a failure message indicating that the
digest and/or the signature doesn’t match what you received:

Verification failure
23016:error:21071065:PKCS7 routines:PKCS7_signatureVerify:digest
failure:pk7_doit.c:804:

23016:error:21075069:PKCS7 routines:PKCS7_verify:signature
failure:pk7_smime.c:265:

Likewise, if the sender’s certificate isn’t recognized by your OpenSSL infrastructure, you’'ll get a similar error:

Verification failure

9544 :error:21075075:PKCS7 routines:PKCS7_verify:certificate verify

error:pk7_smime.c:222:Verify error:self signed certificate

Most e-mail clients send a copy of the public certificate in the signature attached to the message. From the command line, you can

view the certificate data yourself. You’ll use the smime -pk7out option to pipe a copy of the PKCS#7 certificate back into the pkcs7
option. It’'s oddly cumbersome but it works.

openssl smime -pk7out —-in msg.txt | \
openssl pkcs7 -text —-noout -print_certs

If you'd like to extract a copy of your correspondent’s certificate for long-term use, use just the first part of that pipe.

openssl smime -pk7out —-in msg.txt -out her-cert.pem

At that point, you can either integrate it into your OpenSSL infrastructure or you can save it off somewhere for special use.

openssl smime -verify —-in msg.txt —-CAfile /path/to/her—-cert.pem

How do | encrypt a S/MIME message?

Let’s say that someone sends you her public certificate and asks that you encrypt some message to her. You've saved her certificate
as her-cert.pem. You’ve saved your reply as my-message.ixt.

To get the default—though fairly weak—RC2-40 encryption, you just tell openssl where the message and the certificate are located.
openssl smime her-cert.pem -encrypt —-in my-message.txt

If you're pretty sure your remote correspondent has a robust SSL toolkit, you can specify a stronger encryption algorithm like triple

04/18/2024 18/19

DES:

openssl smime her-cert.pem -encrypt -des3 —-in my-message.txt

By default, the encrypted message, including the mail headers, is sent to standard output. Use the -out option or your shell to redirect
it to a file. Or, much trickier, pipe the output directly to sendmail.

openssl smime her-cert.pem \
-encrypt \
-des3 \
-in my-message.txt \
—from 'Your Fullname <you@youraddress.com>' \
-to 'Her Fullname <her@heraddress.com>"' \
-subject 'My encrypted reply' |\

sendmail her@heraddress.com

How do | sigh a S/MIME message?

If you don’'t need to encrypt the entire message, but you do want to sign it so that your recipient can be assured of the message’s
integrity, the recipe is similar to that for encryption. The main difference is that you need to have your own key and certificate, since
you can'’t sign anything with the recipient’s cert.

openssl smime \
-sign \
-signer /path/to/your-cert.pem \
—-in my-message.txt \
—from 'Your Fullname <you@youraddress.com>' \
-to 'Her Fullname <her@heraddress.com>"' \
-subject 'My signed reply' |\

sendmail her@heraddress.com

Resources

e http://www.madboa.com/geek/openssl/#cert-exam

History

#1 - 01/15/2014 09:31 PM - Daniel Curtis

- Description updated

#2 - 08/09/2014 09:14 PM - Daniel Curtis

- Project changed from Automation Laboratory Technology to GNU/Linux Administration

#3 - 12/26/2014 10:09 AM - Daniel Curtis

- Description updated

04/18/2024 19/19

http://www.madboa.com/geek/openssl/#cert-exam
http://www.tcpdf.org

