FreeBSD Administration - Support #543

Install a Puppet Master, Puppet Dashboard and Nagios Server with Nginx on FreeBSD
01/24/2015 08:53 PM - Daniel Curtis

Status: Closed Start date: 04/29/2014
Priority: Normal Due date:

Assignee: Daniel Curtis % Done: 100%
Category: Automated Server Management Estimated time: 5.00 hours
Target version: FreeBSD 9 Spent time: 8.00 hours
Description

Puppet and Nagios have been two of the most useful tools for my small business; puppet allowing me to manage many servers and
services using Ruby to write my configs, and nagios allowing me to monitor the servers and services. This is a simple guide to setup
something similar to the system | have on FreeBSD 9.2.

This will set up 2 web applications that can be viewed in any modern web browser at:

Default blank landing page - http:/puppet.example.com
Puppet Dashboard - http://puppet.example.com:3000
Nagios - http://nagios.example.com:8000

Puppet Master - https://puppet.example.com:8140

e o o o

The first will be the puppet dashboard and the second will be the nagios dashboard.

Prepare the Server

¢ Once the server baseline has been installed and root access has been obtained make sure the server is up to date:

pkg update && upgrade
portsnap fetch extract

* Portmaster will be useful for upgrading packages:

cd /usr/local/ports/ports—-mgmt/portmaster
make install clean

pkg2Zng

Install MariaDB server

e Start by installing the mariadb-server and mariadb-client packages:

portmaster databases/mariadb55-{server,client}

Configure MariaDB server

e Copy a base MariaDB configuration to use
cp /usr/local/share/mysqgl/my-small.cnf /var/db/mysqgl/my.cnf

e Tuning: Copy one of the default config files and change the max packet size to allow for the 17 MB data rows that Dashboard
can occasionally send:

08/22/2025 1/17

http://puppet.example.com
http://puppet.example.com:3000
http://nagios.example.com:8000
https://puppet.example.com:8140

vi /var/db/mysgl/my.cnf

o and modify max_allowed_packet to 32M

max_allowed_packet = 32M

e Enable and start MariaDB

echo 'mysqgl_enable="YES"' >> /etc/rc.conf
service mysgl-server start

e Prepare Database for use by running the secure installation. Choose a root password and answer yes to all questions.

mysqgl_secure_installation

Create MariaDB Databases and Users

* Login to MariaDB and create appropriate databases and users.

mysgl —-u root -p

o and run the following SQL queries to create the puppetmaster database and user:

CREATE DATABASE dashboard_production CHARACTER SET utf8;

CREATE USER 'puppetmaster'@'127.0.0.1' IDENTIFIED BY 'SecretPuppetMasterPassword';
GRANT ALL PRIVILEGES ON puppetmaster.* TO 'puppetmaster'@'127.0.0.1';

flush privileges;

o and run the following SQL queries to create the puppet dashboard database and user:

CREATE DATABASE dashboard_production CHARACTER SET utf8;

CREATE USER 'dashboard'@'127.0.0.1' IDENTIFIED BY 'SuperSecretPassword';
GRANT ALL PRIVILEGES ON dashboard_production.* TO 'dashboard'@'127.0.0.1"';
flush privileges;

o and run the following SQL queries to create the nagios database and user:

CREATE DATABASE nagios CHARACTER SET utf8;
CREATE USER 'nmagios'@'127.0.0.1' IDENTIFIED BY 'SecretNagiosPassword';
GRANT ALL PRIVILEGES ON nagios.* TO 'magios'@'127.0.0.1"';

flush privileges;

Install Puppet Master

o |nstall the puppet package

08/22/2025 2/17

portmaster sysutils/puppet devel/rubygem-rake sysutils/rubygem-bundler databases/rubygem-activ
erecord databases/rubygem-sglite3 databases/rubygem-activerecord-mysqgl-adapter textproc/libxsl
t devel/git www/node

e Enable puppet in /etc/rc.conf:

echo 'puppet_enable="YES"' >> /etc/rc.conf

Puppet Initial Testing

e At this point, Puppet needs to be started so that all its SSL keys can be generated. This gives the chance to test that Puppet
does work before anything else gets stacked on as well as ensures the SSL keys referenced by Nginx's config file are
generated and in place before that step.

service puppetmaster onestart
e On client.example.com - start Puppet on the client system

service puppet onestart

o Or
puppet agent -vt —--waitforcert 60
¢ On puppet.example.com - sign client.example.com's SSL key on the Puppetmaster
puppet cert sign client.example.com
* On client.example.com - Run a test on the client to ensure it works and do a onestop afterwards

puppet agent —-test
service puppet onestop

* NOTE: | encountered a problem while migrating the Admin node, the new server uses a newer version of Puppet, and broke the
fileserver feature. To work around this:
1. In /ust/local/etc/puppet/fileserver.conf put the name of your mount point, the path, and an allow * directive.:

[files]
path /usr/local/etc/puppet/files
allow *

2. In /usr/local/etc/puppet/auth.conf:
Use a regular expression path to match both the file_metadata and file_content endpoints followed by the name of your
custom mount point. Then, use any combination of allow and allow_ip directives to control access.

path ~ ~/file_ (metadata|content)/files/
auth yes

allow /~(.+\.)?example.com$/

allow_ip 192.168.100.0/24

08/22/2025 3/17

Configure Puppet Master

e Configure your [puppetmasterd] section to reflect these settings:

vi /usr/local/etc/puppet/puppet.conft

o And add/modify the following:

[puppetmasterd]

storeconfigs = true

dbadapter = mysqgl

dbuser = puppetmaster

dbpassword = SecretPuppetMasterPassword

dbserver = localhost
dbsocket = /var/run/mysgld/mysqgld.sock

e To optimize some often run Puppet queries on your MySQL database, log in to the MariaDB server:
mysgl —-u root -p
o And run the following to create the index:

create index exported_restype_title on resources (exported, restype, title(50));

Install Puppet Dashboard
Now its time to install Puppet Dashboard, a web frontend to display puppet reports.

e |nstall puppet-dashboard from git

cd /usr/local/www
git clone git://github.com/sodabrew/puppet—-dashboard.git

e Manually create the 'puppet-dashboard' user and group:

pw groupadd -n puppet-dashboard -g 800

pw useradd -n puppet-dashboard -c "Puppet Dashboard,,," -u 800 -g puppet-dashboard -s /usr/sbi

n/nologin
e Then provide the required permissions to /usr/local/www/puppet-dashboard

chown —-R puppet-dashboard:puppet-dashboard /usr/local/www/puppet-dashboard

Configure Puppet Dashboard

e Copy the example database YAML file and update with database information:

cd /usr/local/www/puppet-dashboard/config
cp database.yml.example database.yml

08/22/2025 417

e Then edit the database.yml with the corrected information; make sure to replace the password and host:

vi database.yml

o and modify the following parameter accordingly:

production:
database: dashboard_production
username: dashboard
password: SuperSecretPassword
encoding: utfs8
adapter: mysqgl2

e Change the ownership and harden the permissions:

chown puppet-dashboard:puppet-dashboard database.yml
chmod 660 database.yml

e Copy the example settings YAML file, no changes needed:

cd /usr/local/www/puppet-dashboard/config

cp settings.yml.example settings.yml

chown puppet-dashboard:puppet-dashboard settings.yml
chmod 660 settings.yml

e Fix shebang line in External Node Classifier Script.

sed -i '' —-e 's/#! \/usr\/bin\/ruby/#!\/usr\/local\/bin\/ruby/' /usr/local/www/puppet—-dashboar
d/bin/external_node

e |nstall gems required in the 'Gemfile' via the Rubygem Bundler. If the postgresqgl gem bundles is required additional
dependencies are needed:

cd /usr/local/www/puppet-dashboard
bundle install --path vendor/bundle --without postgresqgl

® Generate secret_token. Cleanup any errors and the default token after generating the new one.

echo "secret_token: ‘bundle exec rake secret " >> config/settings.yml
vi config/settings.yml

Setting up the database for Puppet Dashboard
e At this point the database was already installed with some blank tables. We need to run rake to finish the process with the

database structure needed:

cd /usr/local/www/puppet-dashboard
env RAILS_ENV=production bundle exec rake db:setup

Testing That Dashboard is Working

08/22/2025 5/17

* Run Dashboard using Ruby's built-in WEBFrick server to validate functionality. It will be available at
http://puppet.example.com:3000

cd /usr/local/www/puppet-dashboard
su —-m puppet-dashboard -c 'bundle exec rails server'

* Before going into a production environment, Dashboard 2.0 must precompile assets for production:

env RAILS_ENV=production bundle exec rake assets:precompile

e Chown any files created up until now to the right owner:

chown —-R puppet-dashboard:puppet-dashboard /usr/local/www/puppet-dashboard

Configuring Puppet

All agent nodes have to be configured to submit reports to the master. The master has to be configured to send reports to
Dashboard. If you already have a working Puppet installation you can configure it to distribute the updated puppet.conf to your hosts.

e puppet.conf (on each agent)

[agent]
report = true

e puppet.conf (on the Puppetmaster)

[master]

reports = store, http

reporturl = http://puppet.example.com:3000/reports/upload

node_terminus = exec

external_nodes = /usr/bin/env PUPPET_DASHBOARD_URL=http://puppet.example.com:3000 /usr/local
/www/puppet-dashboard/bin/external_node

li
e Testing Puppet's Connection to Dashboard. A new background task should show in the Dashboard Ul at
http://puppet.example.com:3000

puppet agent —--test

e Dashboard ships a worker process manager under script/delayed_job. It can manually start delayed jobs via the following
command:

su -m puppet-dashboard -c 'env RAILS_ENV=production bundle exec script/delayed_job -p dashboar
d —n 2 -m start'

Delayed Job Worker Init Script

However, rather than manually triggering background workers, this rc script will accomplish the same thing and ensure the
background jobs get started on the next reboot.

e Create puppet dashboard FreeBSD init script:

08/22/2025 6/17

http://puppet.example.com:3000
http://puppet.example.com:3000

vi /usr/local/etc/rc.d/dashboard_workers

o and add the following

#!/bin/sh

PROVIDE: dashboard_workers
REQUIRE: LOGIN
KEYWORD: shutdown

B

By default dashboard_workers uses flags '-n 1' for 1 worker. This should be

adjusted to the number of CPU cores.
dashboard_workers_enable=${dashboard_workers_enable:-"NO"}
dashboard_workers_flags=${dashboard_workers_flags:-"-n 1"}

The default rails environment is set to production
dashboard_workers_env=${dashboard_workers_env:-"/usr/bin/env PATH=${PATH}:/usr/local/bin R
AILS_ENV=production"}

The default user is set to puppet-dashboard and install location is set to

/usr/local/share/puppet—-dashboard.
dashboard_workers_user=${dashboard_workers_user:-"puppet-dashboard"}
dashboard_workers_chdir=${dashboard_workers_chdir:-"/usr/local/www/puppet-dashboard"}

/etc/rc.subr

name="dashboard_workers"
rcvar="dashboard_workers_enable"
load_rc_config S$name
extra_commands="reload run zap status"

All commands call the same function and strip the fast|one|quiet prefix
to deliver to the bundler.

reload_cmd="f_ dashboard_workers reload"

restart_cmd="f_dashboard_workers restart"

run_cmd="f_dashboard_workers run"

start_cmd="f_dashboard_workers start"

status_cmd="f_dashboard_workers status"

stop_cmd="f_dashboard_workers stop"

zap_cmd="f_dashboard_workers zap"

Use the function's ARVG $1 as the bundler program's '-m' flag
f _dashboard_workers () {
cd Sdashboard_workers_chdir && \
su -m "S$dashboard_workers_user" \
—-c "${dashboard_workers_env} bundle exec script/delayed_job ${rc_flags} -p dashboa
rd -m $1" || \
echo "Failed to $1 dashboard_workers"

run_rc_command "$1"

o And make it executable:

chmod +x /usr/local/etc/rc.d/dashboard_workers

e With that in place, we need to override the defaults and enable the script along with setting '-n 4' workers to match the number
of processor cores and ensure it's ready for a production workload.

echo 'dashboard_workers_enable="YES"' >> /etc/rc.conf
echo 'dashboard_workers_flags="-n 4"' >> /etc/rc.conf
service dashboard_workers start

08/22/2025 7/17

Puppet Dashboard on Nginx with Passenger

o |nstall Nginx with Passenger

portmaster www/nginx
NOTE: Make sure to enable [X]PASSENGER during the nginx configuration.

e |nstall the Passenger gem:

portmaster www/rubygem-passenger
NOTE: Make sure to enable NGINX when running make config

e Create a configuration directory to make managing individual server blocks easier
mkdir /usr/local/etc/nginx/conf.d
e Configuring Nginx with Passenger, edit the main nginx configuration file:

vi /usr/local/etc/nginx/nginx.conf

o And add/modify the following

user WWw WWW;

worker_processes 4;

error_log /var/log/nginx/error.log notice;
pid /var/run/nginx.pid;

events {
worker_connections 1024;

http {
passenger_root /usr/local/lib/ruby/gems/2.1/gems/passenger-5.0.4;
passenger_ruby /usr/local/bin/ruby;
passenger_max_pool_size 15;
passenger_pool_idle_time 300;
#passenger_spawn_method direct; # Uncomment on Ruby 1.8 for ENC to work

include mime.types;

default_type application/octet-stream;
sendfile on;

tcp_nopush on;

keepalive_timeout 65;
tcp_nodelay on;

Load config files from the /etc/nginx/conf.d directory
include /usr/local/etc/nginx/conf.d/*.conf;

e Then add a default site server block:

vi /usr/local/etc/nginx/conf.d/default.conf

o Add the following:

08/22/2025 8/17

server {
listen 80 default;
server_name _;

index index.html index.php;
root /usr/local/www;

IP and IP ranges which should get access
allow 10.0.0.0/24;

allow 10.1.0.1;

all else will be denied

deny all;

basic HTTP auth
auth_basic "Restricted";
auth_basic_user_file htpasswd;

location ~ \.cgi$ {
try_files Suri =404;
include fastcgi_params;
fastcgi_pass unix:/var/run/fcgiwrap/fcgiwrap.sock;
fastcgi_param SCRIPT_FILENAME S$document_root$fastcgi_script_name;
fastcgi_param REMOTE_USER $remote_user;

location ~ \.php$ {
try_files Suri =404;
include fastcgi_params;
fastcgi_pass 127.0.0.1:9000;
fastcgi_param SCRIPT_FILENAME S$document_root$fastcgi_script_name;

e And create a puppet master server block:

vi /usr/local/etc/nagios/conf.d/puppetmaster.conf
o And add the following:
server {

listen 8140 ssl;
server_name puppet.example.com;

passenger_enabled on;

passenger_set_header HTTP_X_CLIENT_DN $ssl_client_s_dn;
passenger_set_header HTTP_X_CLIENT_VERIFY $ssl_client_verify;
passenger_user puppet;

passenger_group puppet;

access_log /var/log/nginx/puppet_access.log;

root /usr/local/etc/puppet/rack/public;
ssl_certificate /var/puppet/ssl/certs/puppet.example.com.pem;
ssl_certificate_key /var/puppet/ssl/private_keys/puppet.example.com.pem;
ssl_crl /var/puppet/ssl/ca/ca_crl.pem;
ssl_client_certificate /var/puppet/ssl/certs/ca.pem;

ssl_ciphers SSLv2:-LOW:-EXPORT:RC4+RSA;
ssl_prefer_server_ciphers on;

ssl_verify_client optional;

ssl_verify_depth iy

ssl_session_cache shared:SSL:128m;

ssl_session_timeout 5m;

08/22/2025 917

e And create a puppet dashboard server block:

vi /usr/local/etc/nagios/conf.d/puppet-dashboard.conf

o And add the following:

server {
listen 3000;
server_name puppet.example.com;

passenger_enabled on;
passenger_user puppet-dashboard;
passenger_group puppet—-dashboard;

access_log /var/log/nginx/dashboard_access.log;

root /usr/local/www/puppet-dashboard/public;

e Create the log directory to prevent issues on startup:

mkdir /var/log/nginx

* Enable a daily log file rotation via newsyslog.conf:

printf "/var/log/nginx/*.log\t\t\t644 7\t * @TO00 JG /var/run/nginx.pid 30\n" >> /etc/newsyslog
.conf

o [f the puppetmaster service is still running from earlier testing, stop it now:

service puppetmaster onestop

e With initial setup of the Puppetmaster done, a RACK file that Nginx will use to start the Ruby application will be needed:

mkdir -p /usr/local/etc/puppet/rack/public

® Create the config.ru file

vi /usr/local/etc/puppet/rack/config.ru

o And add the following

Trimmed back FreeBSD Version of https://github.com/puppetlabs/puppet/blob/master/ext/rac
k/files/config.ru

50 = "master"

ARGV << "—-rack"

ARGV << "—-confdir" << "/usr/local/etc/puppet"
ARGV << "——vardir" << "/var/puppet"

require 'puppet/util/command_line'
run Puppet::Util::CommandLine.new.execute

* Make the script executable

08/22/2025 10/17

chown -R puppet:puppet /usr/local/etc/puppet/rack
* Enable nginx service and start it. At this point basic functionality is online:

echo 'nginx_enable="YES"' >> /etc/rc.conf
service nginx start

o NOTE: | had a problem connecting to the puppet master, getting 403 errors, after | had setup Nginx/Passenger. The
problem was with the /usr/local/etc/puppet/puppet.conf and there being a couple of parameters that needed to be taken
out. If the following two lines are present, remove or comment them out. They are are provided in the nginx.conf:

#ssl_client_header = SSL_CLIENT_S_DN
#ssl_client_verify_header = SSL_CLIENT_VERIFY

Configuring Dashboard - Advanced Features

e Generating Certs and Connecting to the Puppet Master
With separate Puppet/Dashboard systems the puppet cert sign dashboard will be on the Puppetmaster:

cd /usr/local/www/puppet-dashboard

su —m puppet-dashboard -c 'bundle exec rake cert:create_key_pair'
su —m puppet-dashboard -c 'bundle exec rake cert:request'

puppet cert sign dashboard

su -m puppet-dashboard -c 'bundle exec rake cert:retrieve'

Enabling Inventory Support

e Edit the auth.conf file on Puppet master

vi /usr/local/etc/puppet/auth.conf
o Add the following:
path /facts
auth yes

method find, search
allow dashboard

Enabling the Filebucket Viewer

o Edit the site.pp on the Puppet master:

vi /usr/local/etc/puppet/manifests/site.pp

o Add the following:

filebucket { "main":
server => "{your puppet master}",
path => false,

}

o In either site.pp, in an individual init.pp, or in a specific manifest.

08/22/2025 11/17

File { backup => "main" }

® Go back and add the line for Inventory Support

vi /usr/local/www/puppet—-dashboard/config/settings.yml

o And change the following parameters:

enable_inventory_service: true
use_file_bucket_diffs: true

o With all the updates made, restart so that it takes effect:
service nginx restart
e For future maintenance, periodic jobs to prune old reports and run DB optimization.
mkdir -p /usr/local/etc/periodic/monthly
vi /usr/local/etc/periodic/monthly/clean_dashboard_database.sh
o And add the following:
#!/bin/sh
cd /usr/local/share/puppet-dashboard && \
echo "Pruning 0Old Reports from Puppet Dashboard Database" && \
/usr/bin/su -m puppet-dashboard -c '/usr/local/bin/bundle exec rake RAILS_ENV=producti
on reports:prune upto=3 unit=mon' && \
echo "Optimizing Database" && \
/usr/bin/su —-m puppet-dashboard -c '/usr/local/bin/bundle exec rake RAILS_ENV=producti

on db:raw:optimize'

o And make it executable:

chmod 755 /usr/local/etc/periodic/monthly/clean_dashboard_database.sh

* And create a weekly script:

mkdir -p /usr/local/etc/periodic/weekly

vi /usr/local/etc/periodic/weekly/clean_puppet_reports.sh

o And add the following:

#!/bin/sh

echo "Pruning Puppetmaster Reports greater than 7 days old"
echo —-n " Reports Removed:"

find /var/puppet/reports -mtime 7 | xargs rm -v | wc -1

o And make it executable:

chmod 755 /usr/local/etc/periodic/weekly/clean_puppet_reports.sh

08/22/2025 12/17

Install Nagios

e Start by installing nagios, php, and fcgi:

portmaster net-mgmt/nagios net-mgmt/nagios-plugins net-mgmt/nrpe www/spawn-fcgi www/fcgiwrap n
et/samba-smbclient databases/p5-DBI databases/p5-Class-DBI-mysql

e And then enable the service to start at boot:

echo 'nagios_enable="YES"' >> /etc/rc.conf
echo 'spawn_fcgi_enable="YES"' >> /etc/rc.conf
echo 'fcgiwrap_enable="YES"' >> /etc/rc.conf
echo 'fcgiwrap_user="www"' >> /etc/rc.conf
echo 'nrpe2_enable="YES"' >> /etc/rc.conf

Configure Nagios

* Now copy the sample config files to real config files

cd /usr/local/etc/nagios/

cp cgi.cfg-sample cgi.cfg

cp nagios.cfg-sample nagios.cfg

cp resource.cfg-sample resource.cfg
cd /usr/local/etc/nagios/objects/

cp commands.cfg-sample commands.cfg
cp contacts.cfg-sample contacts.cfg
cp localhost.cfg-sample localhost.cfg
cp printer.cfg-sample printer.cfg

cp switch.cfg-sample switch.cfg

cp templates.cfg-sample templates.cfg
cp timeperiods.cfg-sample timeperiods.cfg

e Now check you nagios configurations errors

nagios -v /usr/local/etc/nagios/nagios.cfg
* Now set a password for the web interface

htpasswd -c /usr/local/etc/nagios/htpasswd.users nagiosadmin
* Next, create the nagios server block:

vi /usr/local/etc/nginx/conf.d/nagios.conf
o And add the following
server {
listen 8000 default;

server nagios.example.com;

index index.html index.php;
root /usr/local/www;

08/22/2025 13/17

IP and IP ranges which should get access
allow 10.0.0.0/24;

allow 10.1.0.1;

all else will be denied

deny all;

basic HTTP auth
auth_basic "Restricted";
auth_basic_user_file htpasswd;

location ~ \.cgi$ {
try_files Suri =404;
include fastcgi_params;
fastcgi_pass unix:/var/run/fcgiwrap/fcgiwrap.sock;
fastcgi_param SCRIPT_FILENAME S$document_root$fastcgi_script_name;
fastcgi_param REMOTE_USER S$remote_user;

location ~ \.php$ {
try_files Suri =404;
include fastcgi_params;
fastcgi_pass 127.0.0.1:9000;
fastcgi_param SCRIPT_FILENAME S$document_root$fastcgi_script_name;

NOTE: It is important that the .cgi location has fastcgi_pass set to unix:/var/run/fcgiwrap/fcgiwrap.sock.
® | oad the schema
cd /usr/local/share/doc/ndoutils
perl ./installdb -u nagios-p SecretNagiosPassword -h localhost -d nagios

o Example output

DBD: :mysqgl::db do failed: Table ‘nagios.nagios_dbversion’ doesn’t exist at ./installdb lin
e b1.
** Creating tables for version 1.4b9
Using mysgl.sql for installation..
** Updating table nagios_dbversion
Done!

e Configure the /usr/local/etc/nagios/nagios.cfg file and change the following parameter:

event_broker_options=-1

¢ Add the following in “EVENT BROKER MODULE” section

broker_module=/usr/local/bin/ndomod.o config_file=/usr/local/etc/nagios/ndomod.cfg

e Configure the /usr/local/etc/nagios/ndo2db.cfg file, and change the below three lines:

db_user=nagios
db_pass=SecretNagiosPassword
debug_level=-1

e Start ndo2db

08/22/2025 14/17

service ndo2db start

e Start Nagios

service nagios restart

e Start nginx, and check to see if nagios is working by opening a web browser and going to http://example.com/nagios:

service nginx start

e NOTE: | kept getting a permission problem when logging in to the Nagios interface. It turned out | needed to add the correct
admin user:

vi /usr/local/etc/nagios/cgi.cfg

o Then add/modify the following

use_authentication=1

#edit username

authorized_for_all host_commands=username
authorized_for_all hosts=username
authorized_for_all_service_commands=username
authorized_for_all_services=username
authorized_for_configuration_information=username
authorized_for_system_commands=username
authorized_for_system_information=username

Resources

http://docs.puppetlabs.com/dashboard/manual/1.2/bootstrapping.html#configuring-dashboard
http://docs.puppetlabs.com/dashboard/manual/1.2/bootstrapping.html#installing-puppet-dashboard
http://docs.puppetlabs.com/dashboard/manual/1.2/bootstrapping.html#creating-and-configuring-a-mysqgl-database
http://docs.puppetlabs.com/dashboard/manual/1.2/bootstrapping.htmli#testing-that-dashboard-is-working
http://docs.puppetlabs.com/dashboard/manual/1.2/bootstrapping.htmi#configuring-puppet
http://docs.puppetlabs.com/dashboard/manual/1.2/bootstrapping.html#starting-and-managing-delayed-job-workers

e http://docs.puppetlabs.com/dashboard/manual/1.2/bootstrapping.html#running-dashboard-in-a-production-quality-server
http://z0mbix.qgithub.io/blog/2012/03/01/use-nginx-and-passenger-to-power-your-puppet-master/
http://www.watters.ws/mediawiki/index.php/Configure_puppet_master_using_nginx_and_mod_passenger
http://docs.puppetlabs.com/dashboard/manual/1.2/configuring.html

https://forums.freebsd.org/viewtopic.php?&t=42071

http://projects.puppetlabs.com/issues/16686

http://rlaskey.org/words/897/nagios-nginx-freebsd/
http://www.unixmen.com/it-appears-as-though-you-do-not-have-permission-to-view-information-for-any-of-the-hosts-you-request
ed/

e o o o

History

#2 - 01/25/2015 08:59 PM - Daniel Curtis

- Subject changed from Setting Up a Puppet Master, Puppet Dashboard, PuppetDB, Nagios, Nginx Administration Server to Setting Up a Puppet
Master, Puppet Dashboard, Nagios, Nginx Administration Server

- Description updated

#3 - 01/27/2015 12:00 PM - Daniel Curtis
- Description updated

- Status changed from New to In Progress

08/22/2025 15/17

http://example.com/nagios
http://docs.puppetlabs.com/dashboard/manual/1.2/bootstrapping.html#configuring-dashboard
http://docs.puppetlabs.com/dashboard/manual/1.2/bootstrapping.html#installing-puppet-dashboard
http://docs.puppetlabs.com/dashboard/manual/1.2/bootstrapping.html#creating-and-configuring-a-mysql-database
http://docs.puppetlabs.com/dashboard/manual/1.2/bootstrapping.html#testing-that-dashboard-is-working
http://docs.puppetlabs.com/dashboard/manual/1.2/bootstrapping.html#configuring-puppet
http://docs.puppetlabs.com/dashboard/manual/1.2/bootstrapping.html#starting-and-managing-delayed-job-workers
http://docs.puppetlabs.com/dashboard/manual/1.2/bootstrapping.html#running-dashboard-in-a-production-quality-server
http://z0mbix.github.io/blog/2012/03/01/use-nginx-and-passenger-to-power-your-puppet-master/
http://www.watters.ws/mediawiki/index.php/Configure_puppet_master_using_nginx_and_mod_passenger
http://docs.puppetlabs.com/dashboard/manual/1.2/configuring.html
https://forums.freebsd.org/viewtopic.php?&t=42071
http://projects.puppetlabs.com/issues/16686
http://rlaskey.org/words/897/nagios-nginx-freebsd/
http://www.unixmen.com/it-appears-as-though-you-do-not-have-permission-to-view-information-for-any-of-the-hosts-you-requested/
http://www.unixmen.com/it-appears-as-though-you-do-not-have-permission-to-view-information-for-any-of-the-hosts-you-requested/

#4 - 01/27/2015 12:03 PM - Daniel Curtis
- Description updated

#5 - 01/27/2015 12:15 PM - Daniel Curtis
- Description updated

#6 - 01/27/2015 12:17 PM - Daniel Curtis
- Description updated

#7 - 01/27/2015 12:21 PM - Daniel Curtis
- Description updated

#8 - 01/28/2015 10:03 AM - Daniel Curtis
- Project changed from 90 to FreeBSD Administration

#9 - 02/01/2015 07:08 PM - Daniel Curtis
- Description updated

#10 - 02/03/2015 08:28 PM - Daniel Curtis

- Subject changed from Setting Up a Puppet Master, Puppet Dashboard, Nagios, Nginx Administration Server to Setting Up a Puppet Master, Puppet
Dashboard and Nagios Administration Server With Nginx on FreeBSD

- Description updated

#11 - 02/09/2015 03:32 PM - Daniel Curtis
- Description updated

#12 - 02/11/2015 11:27 AM - Daniel Curtis
- Description updated

- Status changed from In Progress to Resolved

#13 - 02/11/2015 11:29 AM - Daniel Curtis

- Description updated

#14 - 02/14/2015 10:48 AM - Daniel Curtis

- Target version set to FreeBSD 9

#15 - 02/14/2015 12:08 PM - Daniel Curtis

- Subject changed from Setting Up a Puppet Master, Puppet Dashboard and Nagios Administration Server With Nginx on FreeBSD to Installing
Puppet Master, Puppet Dashboard and Nagios with Nginx on FreeBSD

- Category set to Automated Server Management

#16 - 02/17/2015 01:42 PM - Daniel Curtis

- Description updated

#17 - 02/22/2015 05:22 PM - Daniel Curtis
- Description updated

- Status changed from Resolved to Closed

#18 - 03/19/2015 08:26 PM - Daniel Curtis

- Description updated

#19 - 03/19/2015 08:40 PM - Daniel Curtis

- Description updated

#20 - 03/20/2015 04:34 PM - Daniel Curtis
- Subject changed from Installing Puppet Master, Puppet Dashboard and Nagios with Nginx on FreeBSD to Install a Puppet Master, Puppet

08/22/2025 16/17

Dashboard and Nagios Server with Nginx on FreeBSD

- Description updated

#21 - 03/20/2015 04:45 PM - Daniel Curtis

- Description updated

#22 - 03/20/2015 05:10 PM - Daniel Curtis

- Description updated

#23 - 03/20/2015 08:01 PM - Daniel Curtis

- Description updated

#24 - 03/21/2015 11:50 AM - Daniel Curtis

- Description updated

#25 - 03/21/2015 12:14 PM - Daniel Curtis

- Description updated

08/22/2025

17/17

http://www.tcpdf.org

